Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new piece for the jigsaw of breast cancer: FoxM1 regulates the expression of oestrogen receptors in breast cancer

13.07.2006
Research just published online in the "Journal of Biological Chemistry" identifies a new molecule involved in the regulation of oestrogen receptors (ER) expression in breast cancer. Oestrogen is an hormone known to affect directly the survival and growth of breast cancer, and its activity is mediated through ER, which are, not only important prognostic factors in the disease, but also involved in the resistance to therapy observed in many of these tumours. The discovery, by elucidating part of the mechanism behind ER, can help to understand better breast cancer, and, in consequence, also the development of new and better therapies for the disease.

Breast cancer is still the most common malignancy among women with half a million deaths every year and one in nine of all females in the western world developing it sometime in their lives. Oestrogen is the major female sex hormone, crucial for the normal sex development and functioning of female organs and tissues, but also with a crucial role in the survival and development of many breast tumours. The hormone acts by binding to specific ER (ER-alpha and ER-beta) in a lock-and-key-mechanism that results in the activation, on the target tissue, of genes involved in cell survival and proliferation.

The role of oestrogen in cancer was first noticed about 100 years ago when researchers observed that removal of the ovaries – the major place for oestrogen production - in women with breast cancer substantially increased their chance of survival. We know now that this effect results from the fact that about 75% of human breast cancers are ER positive (mostly ER-alpha) and, as result, their grow and survival is directly dependent on oestrogen. This is also why men, that do not have ovaries and have much less oestrogen, present much lower breast cancer rates in comparison to women.

But to have ER-positive breast cancer is not only bad news since this type of tumours has the best prognosis, most probably because the hormonal therapies used in these cases (which disrupt oestrogen-ER activation) can be very effective.

Nevertheless, after an initial period of response many ER-positive tumours develop treatment resistance - even if in most of cases they maintain their oestrogen receptors - leading to disease relapses. This is believed to result from “over-activation” of ER, and consequent by-pass of the hormonal therapy effect, by growth factors, another type of hormones capable of activate ER. These cases, together with the 25% of breast tumours that are ER-negative, present a major challenge to an effective clinical management of the disease. As result it is crucial to understand the molecular and cellular mechanisms behind oestrogen receptors expression and activity for a wider and more effective breast cancer therapy.

In agreement with this idea, Patricia A. Madureira, Eric W.-F Lam and colleagues at Imperial College, London, UK and the University of Hong Kong in China looked for molecules capable of affect ER expression and/or activity, and found that transcription factor FoxM1 (transcription factors are proteins that bind to regulatory regions in the DNA leading to the expression or inhibition of specific genes) is a physiological regulator of ER-alpha expression in breast cancer cells.

Madureira, Lam and colleagues started by analysing cells from 16 different breast tumours to find that in 13 of them FoxM1 and ER-alpha expression showed a high correlation, suggesting some kind of functional link between the two molecules. Other experiments, such as the inhibition or, alternatively the introduction of FoxM1 expression in breast cancers cells, which led, respectively, to the reduction or the increase of ER-alpha levels in these cells, confirmed this role of FoxM1 in ER-alpha regulation.

These are findings that can have important therapeutic value because ER regulation/expression is, as here discussed, directly associated with the oestrogen-mediated mechanism that affects the survival and proliferation of tumour cells, and also, in the cases where hormonal therapy is being used, the control (or not) of the disease. To understand the mechanisms affecting the expression of these molecules is then fundamental to be able to have a better chance interfering and controlling breast cancer, a disease that, according to the World Health Organization, only in 2005 had more than a million of new cases diagnosed.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.jbc.org/cgi/reprint/M603906200v1

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>