Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new piece for the jigsaw of breast cancer: FoxM1 regulates the expression of oestrogen receptors in breast cancer

13.07.2006
Research just published online in the "Journal of Biological Chemistry" identifies a new molecule involved in the regulation of oestrogen receptors (ER) expression in breast cancer. Oestrogen is an hormone known to affect directly the survival and growth of breast cancer, and its activity is mediated through ER, which are, not only important prognostic factors in the disease, but also involved in the resistance to therapy observed in many of these tumours. The discovery, by elucidating part of the mechanism behind ER, can help to understand better breast cancer, and, in consequence, also the development of new and better therapies for the disease.

Breast cancer is still the most common malignancy among women with half a million deaths every year and one in nine of all females in the western world developing it sometime in their lives. Oestrogen is the major female sex hormone, crucial for the normal sex development and functioning of female organs and tissues, but also with a crucial role in the survival and development of many breast tumours. The hormone acts by binding to specific ER (ER-alpha and ER-beta) in a lock-and-key-mechanism that results in the activation, on the target tissue, of genes involved in cell survival and proliferation.

The role of oestrogen in cancer was first noticed about 100 years ago when researchers observed that removal of the ovaries – the major place for oestrogen production - in women with breast cancer substantially increased their chance of survival. We know now that this effect results from the fact that about 75% of human breast cancers are ER positive (mostly ER-alpha) and, as result, their grow and survival is directly dependent on oestrogen. This is also why men, that do not have ovaries and have much less oestrogen, present much lower breast cancer rates in comparison to women.

But to have ER-positive breast cancer is not only bad news since this type of tumours has the best prognosis, most probably because the hormonal therapies used in these cases (which disrupt oestrogen-ER activation) can be very effective.

Nevertheless, after an initial period of response many ER-positive tumours develop treatment resistance - even if in most of cases they maintain their oestrogen receptors - leading to disease relapses. This is believed to result from “over-activation” of ER, and consequent by-pass of the hormonal therapy effect, by growth factors, another type of hormones capable of activate ER. These cases, together with the 25% of breast tumours that are ER-negative, present a major challenge to an effective clinical management of the disease. As result it is crucial to understand the molecular and cellular mechanisms behind oestrogen receptors expression and activity for a wider and more effective breast cancer therapy.

In agreement with this idea, Patricia A. Madureira, Eric W.-F Lam and colleagues at Imperial College, London, UK and the University of Hong Kong in China looked for molecules capable of affect ER expression and/or activity, and found that transcription factor FoxM1 (transcription factors are proteins that bind to regulatory regions in the DNA leading to the expression or inhibition of specific genes) is a physiological regulator of ER-alpha expression in breast cancer cells.

Madureira, Lam and colleagues started by analysing cells from 16 different breast tumours to find that in 13 of them FoxM1 and ER-alpha expression showed a high correlation, suggesting some kind of functional link between the two molecules. Other experiments, such as the inhibition or, alternatively the introduction of FoxM1 expression in breast cancers cells, which led, respectively, to the reduction or the increase of ER-alpha levels in these cells, confirmed this role of FoxM1 in ER-alpha regulation.

These are findings that can have important therapeutic value because ER regulation/expression is, as here discussed, directly associated with the oestrogen-mediated mechanism that affects the survival and proliferation of tumour cells, and also, in the cases where hormonal therapy is being used, the control (or not) of the disease. To understand the mechanisms affecting the expression of these molecules is then fundamental to be able to have a better chance interfering and controlling breast cancer, a disease that, according to the World Health Organization, only in 2005 had more than a million of new cases diagnosed.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.jbc.org/cgi/reprint/M603906200v1

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>