Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new piece for the jigsaw of breast cancer: FoxM1 regulates the expression of oestrogen receptors in breast cancer

13.07.2006
Research just published online in the "Journal of Biological Chemistry" identifies a new molecule involved in the regulation of oestrogen receptors (ER) expression in breast cancer. Oestrogen is an hormone known to affect directly the survival and growth of breast cancer, and its activity is mediated through ER, which are, not only important prognostic factors in the disease, but also involved in the resistance to therapy observed in many of these tumours. The discovery, by elucidating part of the mechanism behind ER, can help to understand better breast cancer, and, in consequence, also the development of new and better therapies for the disease.

Breast cancer is still the most common malignancy among women with half a million deaths every year and one in nine of all females in the western world developing it sometime in their lives. Oestrogen is the major female sex hormone, crucial for the normal sex development and functioning of female organs and tissues, but also with a crucial role in the survival and development of many breast tumours. The hormone acts by binding to specific ER (ER-alpha and ER-beta) in a lock-and-key-mechanism that results in the activation, on the target tissue, of genes involved in cell survival and proliferation.

The role of oestrogen in cancer was first noticed about 100 years ago when researchers observed that removal of the ovaries – the major place for oestrogen production - in women with breast cancer substantially increased their chance of survival. We know now that this effect results from the fact that about 75% of human breast cancers are ER positive (mostly ER-alpha) and, as result, their grow and survival is directly dependent on oestrogen. This is also why men, that do not have ovaries and have much less oestrogen, present much lower breast cancer rates in comparison to women.

But to have ER-positive breast cancer is not only bad news since this type of tumours has the best prognosis, most probably because the hormonal therapies used in these cases (which disrupt oestrogen-ER activation) can be very effective.

Nevertheless, after an initial period of response many ER-positive tumours develop treatment resistance - even if in most of cases they maintain their oestrogen receptors - leading to disease relapses. This is believed to result from “over-activation” of ER, and consequent by-pass of the hormonal therapy effect, by growth factors, another type of hormones capable of activate ER. These cases, together with the 25% of breast tumours that are ER-negative, present a major challenge to an effective clinical management of the disease. As result it is crucial to understand the molecular and cellular mechanisms behind oestrogen receptors expression and activity for a wider and more effective breast cancer therapy.

In agreement with this idea, Patricia A. Madureira, Eric W.-F Lam and colleagues at Imperial College, London, UK and the University of Hong Kong in China looked for molecules capable of affect ER expression and/or activity, and found that transcription factor FoxM1 (transcription factors are proteins that bind to regulatory regions in the DNA leading to the expression or inhibition of specific genes) is a physiological regulator of ER-alpha expression in breast cancer cells.

Madureira, Lam and colleagues started by analysing cells from 16 different breast tumours to find that in 13 of them FoxM1 and ER-alpha expression showed a high correlation, suggesting some kind of functional link between the two molecules. Other experiments, such as the inhibition or, alternatively the introduction of FoxM1 expression in breast cancers cells, which led, respectively, to the reduction or the increase of ER-alpha levels in these cells, confirmed this role of FoxM1 in ER-alpha regulation.

These are findings that can have important therapeutic value because ER regulation/expression is, as here discussed, directly associated with the oestrogen-mediated mechanism that affects the survival and proliferation of tumour cells, and also, in the cases where hormonal therapy is being used, the control (or not) of the disease. To understand the mechanisms affecting the expression of these molecules is then fundamental to be able to have a better chance interfering and controlling breast cancer, a disease that, according to the World Health Organization, only in 2005 had more than a million of new cases diagnosed.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.jbc.org/cgi/reprint/M603906200v1

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>