Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers enlist proteins to 'switch on' heart tissue repair system in animal models

11.07.2006
Implications for future approach to treating heart disease

Researchers at the University of Pennsylvania School of Medicine are utilizing a protein to "switch on" the ability to repair damaged heart tissue. By triggering the cell-cycle signal, researchers can manipulate cells in animal models to regenerate damaged heart tissue. If this research is someday successfully translated to humans, it could change the approach to treating heart disease, the nation's leading killer. The findings, now on-line, are in Circulation, the journal of the American Heart Association.

"This is a different concept in terms of how to address heart disease. The classic thinking is to replace a valve, or place a bypass graft. Traditionally, when the heart gets injured, there's dead tissue, and we work our way around it surgically, even replacing the heart with a transplant," explains principal investigator Joseph Woo, MD, Director of the Minimally Invasive and Robotic Cardiac Surgery Program at Penn and Assistant Professor of Surgery. "So we asked, 'What would be the most ideal, natural way of fixing any sort of problem like this?' If you look at nature, the best way is to simply re-grow the tissue. We know that if we take out a piece of the liver, our body has programming to grow it back to how it was."

However, unless the body receives some sort of "jump start," it does not heal dead tissue in the heart. This can have devastating effects. When tissue dies in the heart (for example, due to a heart attack), it is not able to contract and function as effectively to pump oxygenated blood throughout the body, which could ultimately lead to heart failure and death.

Working to better understand how to reverse this damage in humans, Woo first identified the signals in the rat heart that currently prevent the ability to re-grow damaged heart tissue. The researchers then manipulated those signals so the heart could work to regenerate itself.

Specifically, Woo's team investigated myocardial regeneration by initiating heart cell division and replication. They did this by expressing the cell-cycle regulator, a protein called cyclin A2. It is unique in its control at two major transitions of the cell cycle and is the only cyclin that is completely silenced after birth in mice, rats and humans. This approach -- using cyclin A2 expression via gene transfer -- yielded improved myocardial function.

"Penn is the first to do this kind of research with damaged heart tissue, by ramping up the body's native reparative system," states Woo. "We are examining the potential role of this regenerative strategy as a future therapy for heart failure. Someday, this could lead to less surgery and perhaps even less medicine in treating heart disease." Woo cautions that this research work has not yet been done on humans and that we may still be years away from that accomplishment.

Susanne Hartman | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://pennhealth.com/cardiac/

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>