Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers enlist proteins to 'switch on' heart tissue repair system in animal models

11.07.2006
Implications for future approach to treating heart disease

Researchers at the University of Pennsylvania School of Medicine are utilizing a protein to "switch on" the ability to repair damaged heart tissue. By triggering the cell-cycle signal, researchers can manipulate cells in animal models to regenerate damaged heart tissue. If this research is someday successfully translated to humans, it could change the approach to treating heart disease, the nation's leading killer. The findings, now on-line, are in Circulation, the journal of the American Heart Association.

"This is a different concept in terms of how to address heart disease. The classic thinking is to replace a valve, or place a bypass graft. Traditionally, when the heart gets injured, there's dead tissue, and we work our way around it surgically, even replacing the heart with a transplant," explains principal investigator Joseph Woo, MD, Director of the Minimally Invasive and Robotic Cardiac Surgery Program at Penn and Assistant Professor of Surgery. "So we asked, 'What would be the most ideal, natural way of fixing any sort of problem like this?' If you look at nature, the best way is to simply re-grow the tissue. We know that if we take out a piece of the liver, our body has programming to grow it back to how it was."

However, unless the body receives some sort of "jump start," it does not heal dead tissue in the heart. This can have devastating effects. When tissue dies in the heart (for example, due to a heart attack), it is not able to contract and function as effectively to pump oxygenated blood throughout the body, which could ultimately lead to heart failure and death.

Working to better understand how to reverse this damage in humans, Woo first identified the signals in the rat heart that currently prevent the ability to re-grow damaged heart tissue. The researchers then manipulated those signals so the heart could work to regenerate itself.

Specifically, Woo's team investigated myocardial regeneration by initiating heart cell division and replication. They did this by expressing the cell-cycle regulator, a protein called cyclin A2. It is unique in its control at two major transitions of the cell cycle and is the only cyclin that is completely silenced after birth in mice, rats and humans. This approach -- using cyclin A2 expression via gene transfer -- yielded improved myocardial function.

"Penn is the first to do this kind of research with damaged heart tissue, by ramping up the body's native reparative system," states Woo. "We are examining the potential role of this regenerative strategy as a future therapy for heart failure. Someday, this could lead to less surgery and perhaps even less medicine in treating heart disease." Woo cautions that this research work has not yet been done on humans and that we may still be years away from that accomplishment.

Susanne Hartman | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://pennhealth.com/cardiac/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>