Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers aim to cut future need for liver transplants

10.07.2006
University of Edinburgh scientists have identified primitive liver cells –possibly dormant from the earliest developmental stage of a human being – which have the potential to mature into different cells types and help repair a failing liver. Their newly-published findings could pave the way for alternative treatments using cell replacements instead of organ transplants for those with liver failure.

A functioning liver is essential for human survival with liver failure ultimately resulting in death, and liver transplantation is presently the only treatment for acute and chronic liver failure. However, the supply of donor livers is insufficient to meet demand, and in the United Kingdom, 20% of patients waiting for a liver transplant will die from liver failure before a suitable donated organ becomes available.

Head of the group Dr James Ross said: "Potentially, cell replacement therapies could provide alternative treatments that would avoid difficulties associated with obtaining sufficient donor organ transplantation. We have now identified primitive cells with the potential to mature into different cell types within and out with the liver. It is possible that these cells lie dormant in the adult liver and may be the source of repair cells that are activated by severe liver injury."

"The liver is often able to repair and heal itself following injury or damage and this occurs in one of three ways. Firstly, mature liver cells have a well recognised and extensive capacity to divide in response to injury. Secondly, in response to massive loss of functioning liver tissue, a population of primitive liver stem cells may be stimulated to proliferate and develop into mature liver cells. The third mechanism of liver repair involves circulating stem cells originating from other sources, such as the bone marrow, and it is possible that these cells may be recruited into the liver and form new liver cells."

Linda Menzies | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Health and Medicine:

nachricht Fast-tracking T cell therapies with immune-mimicking biomaterials
16.01.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>