Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET/CT offers ’superior’ view of atherosclerosis plaque, may identify those at risk for heart attack

06.06.2006


Positron emission tomography (PET) in combination with computed tomography (CT) offers a “superior” view of atherosclerosis plaque inflammation—so much so that it may eventually be used to identify individuals who are at high risk for heart attack or stroke, according to researchers at Massachusetts General Hospital in Boston. Their findings were released during SNM’s 53rd Annual Meeting June 3–7 in San Diego.



“The future is using PET/CT—and other developing technologies—to assess plaques that are biologically active with deadly consequences when they misbehave,” said Ahmed Tawakol, cardiologist and co-director of the Cardiac MR/PET/CT Program at Massachusetts General Hospital. “PET/CT in combination is more powerful than either PET or CT alone, providing us with an enriched data set,” added the co-author of “Combined PET/CT Assessment of Carotid Plaques: A Human Histopathological Study.” He explained, “In investigating the use of today’s imaging technologies to predict those individuals with high risk for stroke or heart attack, we determined we can possibly improve on current risk stratification strategies by identifying patients as being at low, moderate, high or very high risk for developing a heart attack or stroke.” PET/CT “may allow us to identify patients at highest risk for heart attacks or strokes, so physicians can focus the appropriate medical attention on them more quickly and more aggressively,” said Tawakol. In addition, it “might allow us to reclassify individuals previously thought to be at high risk. Biologically inactive plaques suggest a moderate or even low risk, thereby sparing patients more aggressive interventions,” he added.

Atherosclerosis is the process in which deposits of fats, cholesterol, cellular waste products and other substances—called plaque—build up in the inner lining of an artery. This may limit blood flow through the carotid arteries, which supply blood to the head and neck. More than 71 million Americans have one or more forms of cardiovascular disease, which claims more lives than cancer, accidents and HIV (AIDS) combined.


This study benefits those individuals with carotid disease and opens the exploration of the biological questions of atherosclerosis and related heart diseases, said Tawakol. “This molecular imaging research opens the door for the testing of new and future therapies and the identification of promising new drugs,” he added.

PET/CT imaging enables the collection of both biological and anatomical information during a single exam, with PET picking up metabolic signals of body cells and tissues and CT offering a detailed picture of internal anatomy. “We establish that PET in combination with CT is superior to PET alone for characterization of plaque inflammation,” said Tawakol, explaining that the current study builds on prior observations that PET is useful in characterizing plaque formation. “There is a lot of interest in learning how to stabilize or pacify plaques, and we may be able to test this,” he noted, saying additional research might determine if a cardiac event can be predicted by identifying plaque inflammation.

“This is very exciting work,” said Josef Machac, SNM’s Scientific Program Committee cardiovascular vice chair. “The idea is that atherosclerosis comes in different ‘flavors,’ and the challenge is to predict whether patients are at high risk for having a stroke or heart attack,” added the director of the Clinical PET Center and nuclear medicine at Mount Sinai School of Medicine in New York City. He continued, “This research points the way by examining carotid plaque function from PET and its structure from CT.”

Abstract: A. Tawakol, D. Vermylen, J. Swanson and J. Moloo, medicine/cardiology, Massachusetts General Hospital, Boston; R. Curry, A. Morss, U. Hoffmann, T.J. Brady and A.J. Fischman, radiology, Massachusetts General Hospital, Boston; and S. Bedri, pathology, Massachusetts General Hospital, Boston, “Combined PET/CT Assessment of Carotid Plaques: A Human Histopathological Study,” SNM’s 53rd Annual Meeting, June 3–7, 2006, Scientific Paper 9.

About SNM

SNM is holding its 53rd Annual Meeting June 3–7 at the San Diego Convention Center. Research topics for the 2006 meeting include molecular imaging in clinical practice in the fight against cancer; the role of diagnostic imaging in the management of metastatic bone disease; metabolic imaging for heart disease; neuroendocrine and brain imaging; new agents for imaging infection and inflammation; and an examination of dementia, neurodegeneration, movement disorders and thyroid cancer.

SNM is an international scientific and professional organization of more than 16,000 members dedicated to promoting the science, technology and practical applications of molecular and nuclear imaging to diagnose, manage and treat diseases in women, men and children. Founded more than 50 years ago, SNM continues to provide essential resources for health care practitioners and patients; publish the most prominent peer-reviewed resource in the field; sponsor research grants, fellowships and awards; host the premier annual meeting for medical imaging; and train physicians, technologists, scientists, physicists, chemists and radiopharmacists in state-of-the-art imaging procedures and advances. SNM members have introduced—and continue to explore—biological and technological innovations in medicine that noninvasively investigate the molecular basis of diseases, benefiting countless generations of patients. SNM is based in Reston, Va.; additional information can be found online at www.snm.org.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>