Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing methods for studying health effects of air pollution

19.05.2006


A model for assessing urban fine particle concentrations developed in a research project led by Professor Jaakko Kukkonen has substantially improved the methods used in urban air quality measurements. Funded by the Academy of Finland in 1999–2001, the project was among the first to develop methods for modelling urban air pollution through international cooperation. The project perfected the emission, dispersion and transformation models of road traffic emissions. Kukkonen’s research is one of the projects presented in the Academy’s report "The impact of research in biosciences and environmental research".



The results of the project have had extensive impact, both scientifically and socially. The project was mainly carried out at the Finnish Meteorological Institute, and the created methodological basis has, for instance, been used, developed and applied in later research projects studying the health effects of air pollution. The models have, for example, been used to calculate the distribution of air pollution concentrations in the Helsinki metropolitan area. This allows for more extensive assessments of exceedings of reference and limit values of concentration levels in comparison to mere measurements. The results thus have direct social significance as well.

"Collaboration with the Helsinki Metropolitan Area Council (YTV) from the very planning of the project led to that YTV is putting the results and to some extent also the methods to use in its practical work of assessing alternatives for traffic, urban and environmental planning," says Jaakko Kukkonen. The developed models have since been used to, for example, calculate health effects of air pollution in the Helsinki metropolitan area with different traffic system plans. This has been carried out in cooperation with the National Public Health Institute and YTV as part of the Academy of Finland’s Health Promotion Research Programme TERVE.


The Finnish Meteorological Institute and YTV have also jointly published two reports on the use of dispersion models in air quality and population exposure assessments in the Helsinki metropolitan area. The reports include computational estimates of emission, dispersion and transformation of gas-like pollutants as well as population exposure to air pollution in the Helsinki metropolitan area.

The research project has been continued as part of Tekes’ technology programme FINE Particles – Technology, Environment and Health, and financed through the EU Fifth Framework Programme. The FINE programme generalised the model system to cover the whole of Europe, and it was for example used to carry out the first assessment of the number of premature deaths in Finland caused by fine particles. This study was done in cooperation with the Finnish Environment Institute (SYKE) and the National Public Health Institute. "Results such as these allow us to put the fine particle problem in terms that political decision-makers can easily grasp," says Kukkonen.

Riitta Tirronen | alfa
Further information:
http://www.aka.fi/eng

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>