Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of parasite cell structures may provide treatments for serious tropical diseases

11.05.2006


Don’t even think about trying to pronounce it. Although it is found in many organisms including humans, glycosylphosphatidylinositol has remained a mouthful for laymen and a puzzle for scientists. And yet GPIs, as science thankfully calls these cellular lipids, are important in numerous biological functions, including disease transmission.



Now, for the first time, cellular biologists at the University of Georgia have developed new tools to study and localize GPIs in living organisms and are discovering a new understanding of how they work in tropical parasites that cause human disease and suffering.

The research was published in the May 9 issue of The FEBS (Federation of European Biochemical Societies) Journal by Kojo Mensa-Wilmot, professor of cellular and molecular biology, and Sandesh Subramanya, a former doctoral student in the department of cellular biology at UGA.


While some GPIs are "attached" to proteins cells, other GPIs are "free," and it is these footloose cellular wanderers that interested Mensa-Wilmot. Until the UGA team developed new molecular tools to study free GPIs in living organisms, their function was unclear at best. Now, new avenues of study could open because of these molecular tools.

Although the term "lipid" is often substituted for "fat," these cell components actually have numerous functions. They are hydrocarbon-containing organic compounds that living cells must have to maintain structure and function. Glycolipids are attached to carbohydrates, and they are involved with cellular energy and also serve as markers for cellular recognition.

The researchers discovered a new function for these glycolipids--they are cleaved in response to cell stress caused by changes in osmotic pressure and relative acidity or alkalinity.

The research by the UGA team is especially important in better understanding the parasite Trypanosoma brucei, which causes human African trypanosomiasis, a disease that affects more than 66 million women, men and children in 36 countries of sub-Saharan Africa. The parasite is transmitted to humans through the bite of the tsetse fly, in which the trypanosome transfers from the mid-gut to the salivary glands where it enters the human bloodstream when the fly bites.

"We found that putting these cells under stress similar to that initially encountered by the trypanosome inside the fly caused the parasites to cleave free GPIs," said Mensa-Wilmot, "and that gives us important information about how the trypanosome cell functions."

The new tools aren’t just helpful in understanding GPIs in T. brucei, either. The team found that it works just as well in understanding the parasite Leishmania, which causes another pervasive and terrible tropical disease called Leishmaniasis. This debilitating disease is found is more than 88 countries where a third of a billion people are at risk to contract it.

In the same set of experiments, the researchers discovered a new pathway for protein movement in the trypanosome that may also be found in other cell types including humans. The scientists discovered that proteins can move from a glycosome, an important energy-generating organelle in a trypanosome, to the endoplasmic reticulum where GPIs are made, in response to cell stress.

The human equivalent of a glycosome is a peroxisome, whose malfunction is associated with diseases such as Zellweger Syndrome. According to the National Institute of Neurological Disorders and Stroke, symptoms of this disorder at birth "may include lack of muscle tone and an inability to move. Other symptoms may include unusual facial characteristics, mental retardation, seizures and an inability to suck and/or swallow. Jaundice and gastrointestinal bleeding may also occur."

The new research will open areas for further investigation.

"Before this work in trypanosomes, there was no evidence that we could ’catch’ peroxisome proteins moving to the ER" said Mensa-Wilmot. "With better understanding of the process we could begin looking for compounds that may act as drugs by blocking the parasite’s ability to respond to extracellular stress."

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>