Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment for food poisoning

11.05.2006


A team of researchers working at the University of Bristol has found a potential new treatment for listeriosis, a deadly form of food poisoning. Their work is reported in Nature Medicine.



The group, led by Professor Jose Vazquez-Boland, has shown that one particular antibiotic – fosfomycin – can treat Listeria in the body, despite it being ineffective in laboratory conditions.

Because it was not effective in the laboratory, this drug has never been considered for the treatment of listeriosis, in spite of it reaching the infection sites more effectively than other antibiotics.


Professor Vazquez-Boland said: “Our results illustrate that antibiotic resistance in the laboratory does not always mean that the drug will not work in the infected patient. This work brings some optimism to the highly worrying problem of the increasing resistance to antibiotics.”

The Listeria bacteria causes the food-borne disease, listeriosis. It often triggers a brain infection and kills up to 30% of those affected.

To test whether antibiotics are effective, bacteria are taken from patients and tested in the laboratory. These tests measure whether antibiotics can halt the growth of Listeria in laboratory conditions. Such tests are usually a measure of how effective the drug will be in the body.

When tested this way, Listeria had been shown to be resistant to the antibiotic, fosfomycin. As a consequence, this drug has never been considered for the treatment of listeriosis.

Dr Mariela Scortti, lead author on the paper, added: “Our findings warn about the need to revise laboratory methods currently in use to determine the susceptibility or resistance of bacteria to such drugs, so that the tests reflect better what actually happens in the body.”

Cherry Lewis | alfa
Further information:
http://www.nature.com/nm/journal/v12/n5/abs/nm1396.html
http://www.bristol.ac.uk

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>