Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Five Spanish Hospitals start international phase III clinical trial with H5N1 influenza pandemic vaccine

05.05.2006


Both governments and the scientific community are mobilised to face the threat of a possible pandemic provoked by avian influenza. Whereas there is no need to alarm the population, we must design tools in order to fight influenza in case it develops. According to historical data and to the high genetic variability of influenza virus, the development of this pandemic is only a matter of time and that the appropriate circumstances are given.



The H5N1 virus, which affects the European fowl, has already evidenced that it could successfully break the human barrier. This is the reason why H5N1 is the best candidate to establish the bases of the development of pandemic vaccines. Five large national hospitals will participate in the first study with a H5N1 influenza pandemic vaccine held in Spain. Our specialists are working in an international study, with the participation of 7 countries, in order to assess the possible side effects and immunogenicity of this vaccine, developed by GlaxoSmithKline (GSK), in individuals over 18 years.

A total of 5,052 individuals will participate in this study, 1,500 of which will be recruited in Spain. The five Spanish centres are Hospital 12 de Octubre, Hospital Clínico San Carlos and Hospital de La Princesa in Madrid, and the centres Hospital Vall d’Hebrón and Hospital Clínic in Barcelona. People participating in the study will be randomly separated into two groups: 75% will receive two doses of influenza vaccine, and 25% will receive a dose of conventional influenza vaccine and a dose of placebo. The second dose will be administrated after 21 days after the first medical examination, and during the study, two more examinations will have place (days 43 and 180) and a telephone check (day 51). In 10% of volunteers, blood tests will be made in order to analyse the immune response triggered by the vaccine.


Furthermore, participants will fill in a monitoring card during the week after the administration of each dose, where the potential side effects that could appear, such as pain in the injection area or fever, frequent after any type of vaccination, will be noted. This study has been approved by the Ethics Committees of Clinical Research of the five hospitals and also by the Spanish Agency of Drugs and Health Products.

This vaccine is fractionated, since it only contains parts of the viral proteins which activate our immune system. Since no complete virus is administrated, it is impossible that this vaccine could cause influenza. The vaccine includes an adjuvant, similar to that used by GSK in the malaria vaccine that Hospital Clínic is testing in Mozambique, which enhances the immunogenic effects of the vaccine. The stimulation of the immune system caused by this adjuvant, has already proved successful as a part of a vaccine against conventional influenza, and permits to reduce the antigen concentration administered in each vaccination. In the hypothesis of a pandemic, we must take into account that it would be necessary to vaccinate a large amount of population, and the rhythm of production of vaccines is limited.

The efforts are focused in the development of strategies for vaccine production. Last, this vaccine has been produced following the recommendations of the WHO, so that the H5N1 virus has been recombined with the H1N1 Puerto Rico strain of 1934. This strain is highly stable and promotes the development of vaccines in chicken embryo.

The nomenclature of the several influenza virus identifies the variant they contain of the two more important genes involved in the infection. The Haemaglutinin (H) gene is related with the infectiousness and the virulence of the virus, whereas the Neuraminidase (N) gene determines the ability of progression of the infection. Genetic material of the virus is highly variable and it is found as fractionated single-strained RNA. Small changes in the H and N genes create viruses which cause the frequent annual influenza epidemic. When a large change is produced or a new version of the gene appears, an antigenic change is capable of triggering a worldwide epidemic, called pandemic.

Influenza virus with a pandemic potential could appear by direct transfer of an animal virus to humans, -as happened in the “Spanish Influenza” that in 1918 caused death to 5% of the world population- or by a genetic reassortment between human and animal viruses. Such genetic reassortment would have place in a host co-infected by two different viruses.

The probability that a pandemic human virus is generated is now low, but the risk exists, and it is increased when cases of animal flu are found in humas, such in the case of H5N1. The hundred of death cases documented until now can give an idea of the potential danger we are facing.

Furthermore, there are two circumstances that worsen this situation: this virus can mutate rapidly, and the fowl surviving the infection excrete the virus intensely through respiratory secretions and faeces during at least 10 days. Because of all this, it is important to make a both scientific and economic effort in order to obtain the best weapons to combat a possible definitive adaptation to humans of the H5N1 virus. In any case, this effort led by Spain, Germany, Holland, Sweden, Russia, France and Estonia will permit to improve the available tools in order to face this or future pandemics.

Àlex Argemí Saburit | alfa
Further information:
http://www.clinic.ub.es
http://www.idibaps.ub.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>