Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore new technique to treat high blood pressure, kidney damage

07.04.2006


Nearly one-third of American adults have high blood pressure, a major cause of heart attacks, strokes and kidney failure. But a new technique tested at the University of Florida could prove to be a long-term way to treat the disorder in humans, researchers say.



UF researchers kept blood pressure from worsening and nearly eliminated kidney damage in rats exposed to cold weather, which can constrict blood vessels and overload the kidneys with hormones, according to findings published online recently in the journal Gene Therapy.

Using a corrective gene, scientists were able to block a protein in the kidneys that triggers high blood pressure and kidney damage, said Zhongjie Sun, M.D., Ph.D., a UF assistant professor of medicine, physiology and functional genomics and the lead author of the study.


The protein, called a mineralocorticoid receptor, signals the body to absorb sodium and water into the bloodstream. This increases the amount of blood in the body, also increasing blood pressure. While some treatments already on the market block the MR protein, the medications don’t target it specifically, interfering with other receptors and causing unwanted side effects, Sun said.

"This new technique can specifically and efficiently inhibit the protein and prevent the progression of hypertension," Sun said. "I’m very optimistic this gene complex will be used for human gene therapy to treat hypertension."

To block the protein, researchers used a technique called RNA interference. A harmless virus ferries fragments of RNA into the body, where they infiltrate cells and stop the protein. It’s the first time scientists have used the approach to treat hypertension and kidney damage, he said.

The treatment kept blood pressure from escalating but did not lower it to normal levels, most likely because the researchers monitored the rats only for three weeks after they were treated. Blood pressure continued to rise in rats that did not receive the therapy.

The researchers plan to study what happens to the rats when they are observed for a longer period of time after therapy, which Sun suspects will give their blood pressure more time to drop. It would be unhealthy for blood pressure to drop rapidly, in rats or humans, Sun added.

While researchers expected the treatment to prevent hypertension, they were surprised to discover that it dramatically reduced damage to the kidneys as well, Sun said. It was already known that hypertension can lead to kidney dysfunction, particularly in the later stages of the disease, but these findings show that the MR protein may play more of a role in causing kidney damage than researchers previously understood.

"Increased expression of this protein may cause kidney damage, which has nothing to do with pressure-induced kidney damage," Sun said.

Nearly 65 million Americans have high blood pressure and more than 50,000 people die each year from it, according to the American Heart Association. Blood pressure, which is measured as the rate of pressure in the arteries when the heart forces blood into the vessels over the rate of the heart at rest, is considered high if it rises above a 140/90.

Cold weather can elevate blood pressure. Because of this, heart attacks and strokes are often more common in winter. To simulate cold-induced hypertension in adults, three groups of six rats were housed in a cooled chamber, kept at a steady 44 degrees Fahrenheit for five weeks.

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>