Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore new technique to treat high blood pressure, kidney damage

07.04.2006


Nearly one-third of American adults have high blood pressure, a major cause of heart attacks, strokes and kidney failure. But a new technique tested at the University of Florida could prove to be a long-term way to treat the disorder in humans, researchers say.



UF researchers kept blood pressure from worsening and nearly eliminated kidney damage in rats exposed to cold weather, which can constrict blood vessels and overload the kidneys with hormones, according to findings published online recently in the journal Gene Therapy.

Using a corrective gene, scientists were able to block a protein in the kidneys that triggers high blood pressure and kidney damage, said Zhongjie Sun, M.D., Ph.D., a UF assistant professor of medicine, physiology and functional genomics and the lead author of the study.


The protein, called a mineralocorticoid receptor, signals the body to absorb sodium and water into the bloodstream. This increases the amount of blood in the body, also increasing blood pressure. While some treatments already on the market block the MR protein, the medications don’t target it specifically, interfering with other receptors and causing unwanted side effects, Sun said.

"This new technique can specifically and efficiently inhibit the protein and prevent the progression of hypertension," Sun said. "I’m very optimistic this gene complex will be used for human gene therapy to treat hypertension."

To block the protein, researchers used a technique called RNA interference. A harmless virus ferries fragments of RNA into the body, where they infiltrate cells and stop the protein. It’s the first time scientists have used the approach to treat hypertension and kidney damage, he said.

The treatment kept blood pressure from escalating but did not lower it to normal levels, most likely because the researchers monitored the rats only for three weeks after they were treated. Blood pressure continued to rise in rats that did not receive the therapy.

The researchers plan to study what happens to the rats when they are observed for a longer period of time after therapy, which Sun suspects will give their blood pressure more time to drop. It would be unhealthy for blood pressure to drop rapidly, in rats or humans, Sun added.

While researchers expected the treatment to prevent hypertension, they were surprised to discover that it dramatically reduced damage to the kidneys as well, Sun said. It was already known that hypertension can lead to kidney dysfunction, particularly in the later stages of the disease, but these findings show that the MR protein may play more of a role in causing kidney damage than researchers previously understood.

"Increased expression of this protein may cause kidney damage, which has nothing to do with pressure-induced kidney damage," Sun said.

Nearly 65 million Americans have high blood pressure and more than 50,000 people die each year from it, according to the American Heart Association. Blood pressure, which is measured as the rate of pressure in the arteries when the heart forces blood into the vessels over the rate of the heart at rest, is considered high if it rises above a 140/90.

Cold weather can elevate blood pressure. Because of this, heart attacks and strokes are often more common in winter. To simulate cold-induced hypertension in adults, three groups of six rats were housed in a cooled chamber, kept at a steady 44 degrees Fahrenheit for five weeks.

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>