Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore new technique to treat high blood pressure, kidney damage

07.04.2006


Nearly one-third of American adults have high blood pressure, a major cause of heart attacks, strokes and kidney failure. But a new technique tested at the University of Florida could prove to be a long-term way to treat the disorder in humans, researchers say.



UF researchers kept blood pressure from worsening and nearly eliminated kidney damage in rats exposed to cold weather, which can constrict blood vessels and overload the kidneys with hormones, according to findings published online recently in the journal Gene Therapy.

Using a corrective gene, scientists were able to block a protein in the kidneys that triggers high blood pressure and kidney damage, said Zhongjie Sun, M.D., Ph.D., a UF assistant professor of medicine, physiology and functional genomics and the lead author of the study.


The protein, called a mineralocorticoid receptor, signals the body to absorb sodium and water into the bloodstream. This increases the amount of blood in the body, also increasing blood pressure. While some treatments already on the market block the MR protein, the medications don’t target it specifically, interfering with other receptors and causing unwanted side effects, Sun said.

"This new technique can specifically and efficiently inhibit the protein and prevent the progression of hypertension," Sun said. "I’m very optimistic this gene complex will be used for human gene therapy to treat hypertension."

To block the protein, researchers used a technique called RNA interference. A harmless virus ferries fragments of RNA into the body, where they infiltrate cells and stop the protein. It’s the first time scientists have used the approach to treat hypertension and kidney damage, he said.

The treatment kept blood pressure from escalating but did not lower it to normal levels, most likely because the researchers monitored the rats only for three weeks after they were treated. Blood pressure continued to rise in rats that did not receive the therapy.

The researchers plan to study what happens to the rats when they are observed for a longer period of time after therapy, which Sun suspects will give their blood pressure more time to drop. It would be unhealthy for blood pressure to drop rapidly, in rats or humans, Sun added.

While researchers expected the treatment to prevent hypertension, they were surprised to discover that it dramatically reduced damage to the kidneys as well, Sun said. It was already known that hypertension can lead to kidney dysfunction, particularly in the later stages of the disease, but these findings show that the MR protein may play more of a role in causing kidney damage than researchers previously understood.

"Increased expression of this protein may cause kidney damage, which has nothing to do with pressure-induced kidney damage," Sun said.

Nearly 65 million Americans have high blood pressure and more than 50,000 people die each year from it, according to the American Heart Association. Blood pressure, which is measured as the rate of pressure in the arteries when the heart forces blood into the vessels over the rate of the heart at rest, is considered high if it rises above a 140/90.

Cold weather can elevate blood pressure. Because of this, heart attacks and strokes are often more common in winter. To simulate cold-induced hypertension in adults, three groups of six rats were housed in a cooled chamber, kept at a steady 44 degrees Fahrenheit for five weeks.

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>