Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Growing body of research links lead to osteoporosis


Bolstered by recent laboratory findings, researchers at the University of Rochester Medical Center are embarking on a National Institutes of Health-funded clinical study to better understand the deceptive role environmental lead exposure plays in bone maturation and loss. The clinical trial is the latest in a growing body of research that is putting yet one more notch in the belt of diseases attributed to lead, and this time, researchers say, its target is older adults at risk for osteoporosis.

For decades, scientists have known that the human skeleton is a repository for lead in people who were exposed to high levels of this environmental toxin in their childhood, but thought this storage to be benign. Recently, a growing body of research is showing that the opposite is true, and that lead in bone actually sets off a bizarre chain reaction, first accelerating bone growth, and then eventually limiting it so that a high peak bone mass is not achieved. Preventing a high peak bone mass will predispose a young person to osteoporosis later in life.

Now, researchers in the Center for Musculoskeletal Research at the University of Rochester Medical Center are set to embark on the next phase of a four-year, $5 million research project funded by the National Institute of Environmental Health Sciences with a clinical study aimed at better understanding the deceptive role lead initially plays in bone development, growth and loss – and how this all might lead to earlier onset of osteoporosis in those exposed to high levels of lead as a child.

A metabolic bone disease that predominantly occurs in women, osteoporosis affects one in three American women over the age of 65. It is characterized by low bone mass that eventually leads to fractures, mostly of the hip and vertebrae. These fractures can be life-threatening; experts say that more women die each year from hip fracture complications than from cancer of the ovaries, cervix and uterus combined. Close to $20 billion dollars is spent each year treating osteoporosis and related fractures.

An Ironic Growth Pattern

The pattern of growth in the skeleton determines the peak skeletal density of an individual, and this level is established by the time most people reach 20. Recent research completed at the University of Rochester Medical Center shows that lead adversely affects the normal maturation of the growth plate – but does so in an odd way.

"As a child, lead appears to accelerate bone development and maturation, so that lead-exposed children actually have a higher bone density than those not exposed to environmental lead," said James Campbell, M.D., M.P.H., associate professor of Pediatrics and a co-investigator of the study. "But, we believe this higher bone density effect is short-lived, and in fact, we believe it actually prevents these children from achieving an optimal peak bone mass later on in life."

J. Edward Puzas, Ph.D., professor of Orthopaedics and director of the overall project, added that limiting peak bone mass has dire consequences as a person begins to age.

"When everyone begins to lose bone mass starting at around age 50, lead-exposed individuals are at a higher risk for bone fractures and osteoporosis – and probably at an earlier age than the typical osteoporosis patient."

At what specific age lead-exposed individuals will plateau in bone growth, and at what age they will begin to lose more bone as older adults, is the focus of this clinical research. Puzas and Campbell have used their prior research to guesstimate when these two milestones occur, but are turning to sophisticated lead measurement devices to help them pinpoint exact timeframes.

"We believe that somewhere around age 20, we’ll begin to see low-lead exposed individuals surpass high-lead exposed individuals in bone mass density," Campbell said. "Then, in the 50 to 60 age group – the age at which any individuals will begin to experience a natural loss of bone – we expect to see the high-lead exposed individuals losing more bone sooner."

An X-ray fluorescence spectrometer will be used to measure the bone lead levels in 500 people, separated into three age groups: 8-9 years old, 18-19 years old, and 50-60 years old. One of only a few installed machines worldwide, it provides a precise, noninvasive measurement of the historic accumulated exposure to lead, allowing researchers to place each of the research subjects into an either "low-lead exposure" or "high-lead exposure" category within their age groups. A DEXA-scan will then be used to measure bone density, and with these data in hand, the investigators will have a better sense of when lead-exposed individuals might begin to experience osteoporotic symptoms.

Germaine Reinhardt | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>