Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing body of research links lead to osteoporosis

29.03.2006


Bolstered by recent laboratory findings, researchers at the University of Rochester Medical Center are embarking on a National Institutes of Health-funded clinical study to better understand the deceptive role environmental lead exposure plays in bone maturation and loss. The clinical trial is the latest in a growing body of research that is putting yet one more notch in the belt of diseases attributed to lead, and this time, researchers say, its target is older adults at risk for osteoporosis.



For decades, scientists have known that the human skeleton is a repository for lead in people who were exposed to high levels of this environmental toxin in their childhood, but thought this storage to be benign. Recently, a growing body of research is showing that the opposite is true, and that lead in bone actually sets off a bizarre chain reaction, first accelerating bone growth, and then eventually limiting it so that a high peak bone mass is not achieved. Preventing a high peak bone mass will predispose a young person to osteoporosis later in life.

Now, researchers in the Center for Musculoskeletal Research at the University of Rochester Medical Center are set to embark on the next phase of a four-year, $5 million research project funded by the National Institute of Environmental Health Sciences with a clinical study aimed at better understanding the deceptive role lead initially plays in bone development, growth and loss – and how this all might lead to earlier onset of osteoporosis in those exposed to high levels of lead as a child.


A metabolic bone disease that predominantly occurs in women, osteoporosis affects one in three American women over the age of 65. It is characterized by low bone mass that eventually leads to fractures, mostly of the hip and vertebrae. These fractures can be life-threatening; experts say that more women die each year from hip fracture complications than from cancer of the ovaries, cervix and uterus combined. Close to $20 billion dollars is spent each year treating osteoporosis and related fractures.

An Ironic Growth Pattern

The pattern of growth in the skeleton determines the peak skeletal density of an individual, and this level is established by the time most people reach 20. Recent research completed at the University of Rochester Medical Center shows that lead adversely affects the normal maturation of the growth plate – but does so in an odd way.

"As a child, lead appears to accelerate bone development and maturation, so that lead-exposed children actually have a higher bone density than those not exposed to environmental lead," said James Campbell, M.D., M.P.H., associate professor of Pediatrics and a co-investigator of the study. "But, we believe this higher bone density effect is short-lived, and in fact, we believe it actually prevents these children from achieving an optimal peak bone mass later on in life."

J. Edward Puzas, Ph.D., professor of Orthopaedics and director of the overall project, added that limiting peak bone mass has dire consequences as a person begins to age.

"When everyone begins to lose bone mass starting at around age 50, lead-exposed individuals are at a higher risk for bone fractures and osteoporosis – and probably at an earlier age than the typical osteoporosis patient."

At what specific age lead-exposed individuals will plateau in bone growth, and at what age they will begin to lose more bone as older adults, is the focus of this clinical research. Puzas and Campbell have used their prior research to guesstimate when these two milestones occur, but are turning to sophisticated lead measurement devices to help them pinpoint exact timeframes.

"We believe that somewhere around age 20, we’ll begin to see low-lead exposed individuals surpass high-lead exposed individuals in bone mass density," Campbell said. "Then, in the 50 to 60 age group – the age at which any individuals will begin to experience a natural loss of bone – we expect to see the high-lead exposed individuals losing more bone sooner."

An X-ray fluorescence spectrometer will be used to measure the bone lead levels in 500 people, separated into three age groups: 8-9 years old, 18-19 years old, and 50-60 years old. One of only a few installed machines worldwide, it provides a precise, noninvasive measurement of the historic accumulated exposure to lead, allowing researchers to place each of the research subjects into an either "low-lead exposure" or "high-lead exposure" category within their age groups. A DEXA-scan will then be used to measure bone density, and with these data in hand, the investigators will have a better sense of when lead-exposed individuals might begin to experience osteoporotic symptoms.

Germaine Reinhardt | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>