Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing body of research links lead to osteoporosis

29.03.2006


Bolstered by recent laboratory findings, researchers at the University of Rochester Medical Center are embarking on a National Institutes of Health-funded clinical study to better understand the deceptive role environmental lead exposure plays in bone maturation and loss. The clinical trial is the latest in a growing body of research that is putting yet one more notch in the belt of diseases attributed to lead, and this time, researchers say, its target is older adults at risk for osteoporosis.



For decades, scientists have known that the human skeleton is a repository for lead in people who were exposed to high levels of this environmental toxin in their childhood, but thought this storage to be benign. Recently, a growing body of research is showing that the opposite is true, and that lead in bone actually sets off a bizarre chain reaction, first accelerating bone growth, and then eventually limiting it so that a high peak bone mass is not achieved. Preventing a high peak bone mass will predispose a young person to osteoporosis later in life.

Now, researchers in the Center for Musculoskeletal Research at the University of Rochester Medical Center are set to embark on the next phase of a four-year, $5 million research project funded by the National Institute of Environmental Health Sciences with a clinical study aimed at better understanding the deceptive role lead initially plays in bone development, growth and loss – and how this all might lead to earlier onset of osteoporosis in those exposed to high levels of lead as a child.


A metabolic bone disease that predominantly occurs in women, osteoporosis affects one in three American women over the age of 65. It is characterized by low bone mass that eventually leads to fractures, mostly of the hip and vertebrae. These fractures can be life-threatening; experts say that more women die each year from hip fracture complications than from cancer of the ovaries, cervix and uterus combined. Close to $20 billion dollars is spent each year treating osteoporosis and related fractures.

An Ironic Growth Pattern

The pattern of growth in the skeleton determines the peak skeletal density of an individual, and this level is established by the time most people reach 20. Recent research completed at the University of Rochester Medical Center shows that lead adversely affects the normal maturation of the growth plate – but does so in an odd way.

"As a child, lead appears to accelerate bone development and maturation, so that lead-exposed children actually have a higher bone density than those not exposed to environmental lead," said James Campbell, M.D., M.P.H., associate professor of Pediatrics and a co-investigator of the study. "But, we believe this higher bone density effect is short-lived, and in fact, we believe it actually prevents these children from achieving an optimal peak bone mass later on in life."

J. Edward Puzas, Ph.D., professor of Orthopaedics and director of the overall project, added that limiting peak bone mass has dire consequences as a person begins to age.

"When everyone begins to lose bone mass starting at around age 50, lead-exposed individuals are at a higher risk for bone fractures and osteoporosis – and probably at an earlier age than the typical osteoporosis patient."

At what specific age lead-exposed individuals will plateau in bone growth, and at what age they will begin to lose more bone as older adults, is the focus of this clinical research. Puzas and Campbell have used their prior research to guesstimate when these two milestones occur, but are turning to sophisticated lead measurement devices to help them pinpoint exact timeframes.

"We believe that somewhere around age 20, we’ll begin to see low-lead exposed individuals surpass high-lead exposed individuals in bone mass density," Campbell said. "Then, in the 50 to 60 age group – the age at which any individuals will begin to experience a natural loss of bone – we expect to see the high-lead exposed individuals losing more bone sooner."

An X-ray fluorescence spectrometer will be used to measure the bone lead levels in 500 people, separated into three age groups: 8-9 years old, 18-19 years old, and 50-60 years old. One of only a few installed machines worldwide, it provides a precise, noninvasive measurement of the historic accumulated exposure to lead, allowing researchers to place each of the research subjects into an either "low-lead exposure" or "high-lead exposure" category within their age groups. A DEXA-scan will then be used to measure bone density, and with these data in hand, the investigators will have a better sense of when lead-exposed individuals might begin to experience osteoporotic symptoms.

Germaine Reinhardt | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>