Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers get neurons and silicon talking

27.03.2006


European researchers have created an interface between mammalian neurons and silicon chips. The development is a crucial first step in the development of advanced technologies that combine silicon circuits with a mammal’s nervous system.



The ultimate applications are potentially limitless. In the long term it will possibly enable the creation of very sophisticated neural prostheses to combat neurological disorders. What’s more, it could allow the creation of organic computers that use living neurons as their CPU.

Those applications are potentially decades away, but in the much nearer term the new technology could enable very advanced and sophisticated drug screening systems for the pharmaceutical industry.


"Pharmaceutical companies could use the chip to test the effect of drugs on neurons, to quickly discover promising avenues of research," says Professor Stefano Vassanelli, a molecular biologist with the University of Padua in Italy, and one of the partners in the NACHIP project, funded under the European Commission’s Future and Emerging Technologies initiative of the IST programme.

NACHIP’s core achievement was to develop a working interface between the living tissue of individual neurons and the inorganic compounds of silicon chips. It was a difficult task.

"We had a lot of problems to overcome," says Vassanelli. "And we attacked the problems using two major strategies, through the semiconductor technology and the biology."

With the help of German microchip company Infineon, NACHIP placed 16,384 transistors and hundreds of capacitors on a chip just 1mm squared in size. The group had to find appropriate materials and refine the topology of the chip to make the connection with neurons possible.

Biologically NACHIP uses special proteins found in the brain to essentially glue the neurons to the chip. These proteins act as more than a simple adhesive, however. "They also provided the link between ionic channels of the neurons and semiconductor material in a way that neural electrical signals could be passed to the silicon chip," says Vassanelli.

Once there, that signal can be recorded using the chip’s transistors. What’s more, the neurons can also be stimulated through the capacitors. This is what enables the two-way communications.

The project tested the device by stimulating the neurons and recording which ones fired using standard neuroscience techniques while tracking the signals coming from the chip.

The development of the interface and chip are crucial for this new technology, but problems remain. "Right now, we need to refine the way we stimulate the neurons, to avoid damaging them," says Vassanelli.

That’s one of the problems the team hopes to tackle in a future project. Right now a proposal has been prepared which could tackle this and many other problems, including how to communicate with the neurons using genes.

"Genes are where memory come from, and without them you have no memory or computation. We want to explore a way to use genes to control the neuro-chip," says Vassanelli.

If NACHIP took the first crucial step towards a neuron-powered CPU, future work will pave the way for a genetically-powered hard disk.

"Europe is very well placed in this field of research, because it is essentially a multidisciplinary field, and we have multidisciplinary teams working on it,“ says Vassanelli. ”We also have the infrastructure with institutes like the Max Planck Institute for Biochemistry in Martinsried, which is one of the world leaders in the field. Europe should be very proud of these resources. It gives us access to equipment and expertise that would be very hard to replicate elsewhere."

Tara Morris | alfa
Further information:
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81180

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>