Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Parkinson’s disease may be treated by electric current


A simple and efficient method that facilitates Parkinson’s disease treatment has been developed by researchers of the Institute of Human Brain, Russian Academy of Sciences. Influence of feeble electric current on the brain via electrodes laid on the head skin – the so-called transcranial electric polarization (TCEP) - reduces muscle tone and partially restores patients’ movements. In combination with antiparkinsonian drug intake, TCEP reduces their side effect.

Parkinson’s disease is a chronic progressive degenerative disease of the central nervous system. Its main symptoms are - voluntary movements disorder, increased muscle tone (rigidity) and trembling (tremor). The disease was for the first time described by an English physician James Parkinson in 1817 in his “Essay on Shaking Palsy”. The origin of the disease has not been fully investigated yet.

Today, Parkinson’s disease is no longer the destiny of elderly people, young people become increasingly its victims. This was declared by Igor Zavolokov, head of neurology department, clinics of the Institute of Human Brain, Russian Academy of Sciences. According to him, such conclusion was made by the St. Petersburg neurologists based on their experience of patient management. “Parkinson’s disease is rather widespread, said the physician, about 1 percent of people older than 60 and about 5 percent of people older than 80 suffer from it, however, recently the disease is more and more often registered with the 30-year old patients. Not long ago, a 19-year old girl was diagnosed with this disease.” According to the researchers’ opinion, this situation is due to increasing negative impact of the environment and genetic anomalies accumulation.

The drugs that parkinsonism patients have to take lifelong often have strong side effects and therefore do not relieve the patient’s state too much. Besides, the drugs lose their effectiveness with time. That is why researchers and physicians are in constant search for new remedies.

Transcranial electric polarization may become one of such remedies, according to the opinion of researchers from the Institute of Human Brain, Russian Academy of Sciences, St. Petersburg. The experimental group involved 110 patients with stages of Parkinson’s disease from 1 to 4, 80 patients were included in the main group where TCEP was applied, and the remaining 30 made the reference group and received only drugs. The patients from the main group did not give up the drugs either but in addition they received three to four sessions of electric therapy every other day. Continuous current of 2 milliampere acted for 15 minutes via cathode and anode on the head skin. The patients’ state was assessed judging by intensity of main symptoms – movement rate, muscle tone and tremor – prior to the sessions and after them.

According to physicians’ observations, TCEP application resulted in reduction of reduntant muscle tone, increase in movement rate and also decrease of drug’s side effects. The only thing TCEP had no influence on was tremor. Nevertheless, these are considerable results. Effectiveness of procedure influence on movements and muscle tone varied from 100 to 63.3 percent depending on the stage of disease. The TCEP session effect remained for half a year to a year.

Sergey Komarov | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>