Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound may protect against liver cancer

16.02.2006


Researchers have identified a new compound called CDDO-Im that protects against the development of liver cancer in laboratory animals. The compound appears to stimulate the enzymes that remove toxic substances from the cells, thereby increasing the cells’ resistance to cancer-causing toxins. The National Institute of Environmental Health Sciences and the National Cancer Institute, agencies of the federal National Institutes of Health, provided funding to researchers at the Johns Hopkins Bloomberg School of Public Health for the two-year study.



The compound’s effectiveness at very low doses suggests it may have similar cancer-fighting properties in humans. Researchers believe it may be particularly effective in preventing cancers with a strong inflammatory component, such as liver, colon, prostate and gastric cancers. The compound could eventually play a preventive role in a wide range of other illnesses such as neurodegenerative disease, asthma and emphysema.

The study results are featured on the cover of the February 15, 2006 issue of the journal Cancer Research.


"The results show that the potency of this compound is more than 100 times as great as that of other chemopreventive agents in protecting against cancer," said NIEHS Director David A. Schwartz, M.D. "This protective effect, combined with the compound’s anti-inflammatory properties, make it an exciting avenue for the prevention of other diseases as well."

CDDO-Im belongs to a class of cancer-fighting compounds called triterpenoids. It is a synthetic compound derived from oleanolic acid, a naturally occurring substance found in plants all over the world. Research with other oleanolic derivatives showed marked anti-tumor activity in both animals and humans.

To test the effectiveness of CDDO-Im, researchers treated laboratory rats with either 0.1, 0.3, 1.0, 3.0 or 10 micromole doses of the compound. Two days after treatment with CDDO-Im, the rats were treated with aflatoxin, a naturally occurring toxin that causes liver cancer in animals.

Evaluation of the rat livers showed that the lowest concentration of CDDO-Im led to an 85 percent reduction in pre-cancerous lesions, abnormal growths that have a greater likelihood of developing into actual cancers. "This compound has a much greater effect at a far lower dose than any other compound currently used for preventing aflatoxin-induced cancer in humans," said Thomas Kensler, Ph.D., a cancer biologist with the Johns Hopkins Bloomberg School of Public Health and lead author on the study.

According to Kensler, CDDO-Im activates a protein called Nrf2 that plays a central role in protecting the cells against the toxic effects of environmental agents. "Nrf2 directs certain genes to stimulate the cell’s defense mechanisms," he said. "The protein also stimulates key enzymes that can detoxify harmful agents like aflatoxin and remove them from the cell."

Like other compounds derived from oleanolic acid, CDDO-Im also has strong anti-inflammatory properties that make it ideally suited to the prevention of certain cancers. "When cells become inflamed, they can produce reactive molecules called free radicals that can damage DNA and promote cancer development," said Kensler. "CDDO-Im can also inhibit cancer formation by interfering with this inflammatory process."

Because it can stimulate the body’s cancer-fighting capabilities at such low doses, Kensler believes that CDDO-Im is an excellent candidate for cancer prevention use in humans. "If this compound can produce such a potent and dramatic reduction in the number of pre-cancerous growths, it should have an equally dramatic impact on the development of actual cancers," he said.

In addition to serving as a valuable tool in the development of new cancer prevention interventions, CDDO-Im may offer protection in a wide range of other disease settings. "We know that the Nrf2 protein plays a role in regulating many different kinds of genes involved in protecting the cell from harmful agents," said Kensler. "It follows that activation of the Nrf2 pathway with CDDO-Im could provide protection against a number of diseases where environmental agents play important roles in their causes."

John Peterson | EurekAlert!
Further information:
http://www.niehs.nih.gov
http://www.niehs.nih.gov/home.htm.

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>