Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound may protect against liver cancer

16.02.2006


Researchers have identified a new compound called CDDO-Im that protects against the development of liver cancer in laboratory animals. The compound appears to stimulate the enzymes that remove toxic substances from the cells, thereby increasing the cells’ resistance to cancer-causing toxins. The National Institute of Environmental Health Sciences and the National Cancer Institute, agencies of the federal National Institutes of Health, provided funding to researchers at the Johns Hopkins Bloomberg School of Public Health for the two-year study.



The compound’s effectiveness at very low doses suggests it may have similar cancer-fighting properties in humans. Researchers believe it may be particularly effective in preventing cancers with a strong inflammatory component, such as liver, colon, prostate and gastric cancers. The compound could eventually play a preventive role in a wide range of other illnesses such as neurodegenerative disease, asthma and emphysema.

The study results are featured on the cover of the February 15, 2006 issue of the journal Cancer Research.


"The results show that the potency of this compound is more than 100 times as great as that of other chemopreventive agents in protecting against cancer," said NIEHS Director David A. Schwartz, M.D. "This protective effect, combined with the compound’s anti-inflammatory properties, make it an exciting avenue for the prevention of other diseases as well."

CDDO-Im belongs to a class of cancer-fighting compounds called triterpenoids. It is a synthetic compound derived from oleanolic acid, a naturally occurring substance found in plants all over the world. Research with other oleanolic derivatives showed marked anti-tumor activity in both animals and humans.

To test the effectiveness of CDDO-Im, researchers treated laboratory rats with either 0.1, 0.3, 1.0, 3.0 or 10 micromole doses of the compound. Two days after treatment with CDDO-Im, the rats were treated with aflatoxin, a naturally occurring toxin that causes liver cancer in animals.

Evaluation of the rat livers showed that the lowest concentration of CDDO-Im led to an 85 percent reduction in pre-cancerous lesions, abnormal growths that have a greater likelihood of developing into actual cancers. "This compound has a much greater effect at a far lower dose than any other compound currently used for preventing aflatoxin-induced cancer in humans," said Thomas Kensler, Ph.D., a cancer biologist with the Johns Hopkins Bloomberg School of Public Health and lead author on the study.

According to Kensler, CDDO-Im activates a protein called Nrf2 that plays a central role in protecting the cells against the toxic effects of environmental agents. "Nrf2 directs certain genes to stimulate the cell’s defense mechanisms," he said. "The protein also stimulates key enzymes that can detoxify harmful agents like aflatoxin and remove them from the cell."

Like other compounds derived from oleanolic acid, CDDO-Im also has strong anti-inflammatory properties that make it ideally suited to the prevention of certain cancers. "When cells become inflamed, they can produce reactive molecules called free radicals that can damage DNA and promote cancer development," said Kensler. "CDDO-Im can also inhibit cancer formation by interfering with this inflammatory process."

Because it can stimulate the body’s cancer-fighting capabilities at such low doses, Kensler believes that CDDO-Im is an excellent candidate for cancer prevention use in humans. "If this compound can produce such a potent and dramatic reduction in the number of pre-cancerous growths, it should have an equally dramatic impact on the development of actual cancers," he said.

In addition to serving as a valuable tool in the development of new cancer prevention interventions, CDDO-Im may offer protection in a wide range of other disease settings. "We know that the Nrf2 protein plays a role in regulating many different kinds of genes involved in protecting the cell from harmful agents," said Kensler. "It follows that activation of the Nrf2 pathway with CDDO-Im could provide protection against a number of diseases where environmental agents play important roles in their causes."

John Peterson | EurekAlert!
Further information:
http://www.niehs.nih.gov
http://www.niehs.nih.gov/home.htm.

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>