Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High resolution ’snapshots’ detail dynamics of a cocaine antibody

10.02.2006


Information may spur new therapeutic approaches to addiction and abuse



Cocaine-binding antibodies have shown some promise in their ability to neutralize cocaine toxicity, but their binding ability is severely impaired by high concentrations of the drug. A catalytic monoclonal antibody such as 7A1, on the other hand, has the ability to regenerate after each new dose of the drug, making it far more effective than others in metabolizing cocaine.

The study, which will be published in the February issue (Volume 14 Issue 2) of the journal Structure, was led by Ian A. Wilson, D.Phil., of Scripps Research Department of Molecular Biology and The Skaggs Institute for Chemical Biology, and Kim D. Janda, Ph.D., of Scripps Research Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology.


Despite intensive research, cocaine abuse continues to be a major public health problem, so far eluding efforts at developing an effective therapeutic agent to counter the craving, addiction, and overdose of the drug. To date, no treatment has been approved by the Food and Drug Administration (FDA).

Commenting on the new findings, Xueyong Zhu, Ph.D., the primary author of the study and a staff scientist in the Wilson laboratory said, "Development of effective therapies for cocaine abuse has been a long-standing goal, and a number of medications under study do show some promise. Immunopharmacotherapy has been proposed as a way to neutralize the drug outside the central nervous system- basically soaking up the drug before it has a chance to cross the blood brain barrier-as a potentially effective new approach to treat cocaine abuse."

Using a monoclonal antibody endowed not only with high binding ability, but also with sufficient catalytic activity to metabolize cocaine, would have potentially enhanced therapeutic effects, Zhu said. This antibody could intercept cocaine in the blood stream before it reaches the central nervous system-stopping the drug cold. Because cocaine has a half life of approximately 30 minutes inside the human body, a cocaine catalytic antibody would basically have to out-run the body’s natural metabolism process to have any serious impact on the psychoactive effects of the drug.

Generated by x-ray crystallography, pictures of the conformational changes that occur during the antibody’s complete catalytic cycle show the molecular basis for catalysis and reveal possible mutations that could increase catalytic proficiency. This, Zhu pointed out, provides a foundation for the humanization and mutagenesis of the antibody to enhance its cocaine-hydrolyzing activity and make future human clinical trials feasible. "Given the fact that catalytic antibodies have been produced with the same levels of efficiency as natural enzymes, it seems well within the realm of possibility," he added.

To reach this ambitious goal, however, it may be necessary to explore new incremental approaches for optimizing the efficiency of such catalytic activity. Novel functional groups could be introduced into first generation antibody catalysts by multiple rounds of mutagenesis and selection to produce improvements. In essence, this would allow scientists to dramatically accelerate the evolutionary process, producing improvements in the immune system in weeks or months that previously took billions of years.

"The structural insights into antibody catalysis that we have shown with 7A1 Fab’ are critical for any future improvement of effective biocatalysts," Zhu said. "One of the main goals of our lab has been to focus on catalytic antibodies that will have a direct impact on public health issues. With the snapshots of the complete cycle of the cocaine antibody catalytic reaction, we have shed new light on the sequence of events in an antibody-mediated reaction and provided a rare glimpse of the structural dynamics involved. With this information, it’s possible to move onto the next step in the development of a treatment for cocaine abuse and addiction."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>