Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV subtype predicts likelihood of early death from AIDS

08.02.2006


Johns Hopkins scientists say an infected person’s HIV subtype is a better predictor than viral load for determining rapid death from AIDS. Traditional testing standards help monitor the progression of an HIV infection to AIDS by keeping track of viral load, using a scale in which less than 50 viral particles per cubic milliliter of blood is considered suppressed disease and a viral load of more than 75,000 particles per cubic milliliter of blood means that the disease will progress more rapidly.



In what is believed to be the first analysis of viral subtype as a predictor of death from AIDS, which also takes into account viral load, the Hopkins team found that having viral subtype D made a person with HIV likely to die more rapidly compared to a person with subtype A. Ten percent of those infected with subtype D died within three years, while none with subtype A died. However, viral load ranged from 20,000 particles per cubic milliliter of blood to 100,000 particles per cubic milliliter of blood in those with both subtypes, and was not found to be an accurate predictor of rapid death within the same timeframe.

Participants in the study came from the Rakai cohort, a population of 12,000 people in Uganda who are being monitored to determine how HIV spreads throughout the country. More than 300 newly infected men and women participated in the study, conducted between 1995 and 2001, with 53 becoming infected with subtype A and 203 infected with subtype D. Another 70 were infected with a recombinant version of both subtypes. Even though the quantity of virus infecting these individuals was roughly the same for each subtype, average years of survival for each subtype differed widely: 8.8 years for A, 6.9 years for D and 5.8 years for AD.


Through annual blood tests, which were part of the study, the researcher knew when each person became infected. Once the diagnosis was confirmed, researchers used DNA tests to determine the HIV subtype, A and D being the most common in Uganda.

Researchers believe that subtype D is more virulent than subtype A because D has the ability to bind to key receptors on immune cells, allowing subtype D to kill more quickly. Additional blood analysis showed that with subtype A, the virus bound only to one kind of receptor, CCR5, to infect the cell. But 25 percent of subtype D virus bound to both CCR5 and another receptor, CXCR4. Indeed, two-thirds of those infected with CXCR4-binding virus died within three years.

According to the study’s lead researcher, Oliver Laeyendecker, M.S., M.B.A., a senior research associate at The Johns Hopkins University School of Medicine and senior research assistant at the National Institute of Allergy and Infectious Disease, "Knowing a person’s HIV subtype is important for the management of the infection because the disease can progress more rapidly in those infected with subtype D and recombinant virus incorporating subtype D than in those with other subtypes."

The Effect of HIV Subtype on Rapid Disease Progression in Rakai, Uganda. Oliver Laeyendecker, Xianbin Li, Miguel Arroyo, Francine McCutchan, Ron Gray, Maria Wawer, David Serwadda, Fred Nalugoda, Godfrey Kigozi, and Thomas Quinn.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>