Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study demonstrates rapid diagnosis of urinary tract infections with biosensor technology

06.02.2006


New system could replace time-intensive, century-old lab techniques



For the millions of people who suffer from urinary tract infections each year and the doctors who treat them, a promising new biosensor technology has been developed that may replace antiquated testing methods and save precious health care dollars.

In a recent clinical study conducted by the David Geffen School of Medicine at UCLA and the Veterans Affairs Greater Los Angeles Healthcare System, researchers used a biosensor developed by corporate partner GeneFluidics to identify correctly the infection-causing gram negative bacteria species in 98 percent of the tested clinical urinary tract infection urine samples. These results represent the first ever species-specific detection of bacteria in human clinical fluid samples using a microfabricated electrochemical sensor array.


Of equal significance, the new test provided results in 45 minutes, compared to two days with conventional methods.

The research, reported in the February 2006 issue of the peer-reviewed Journal of Clinical Microbiology, investigated a new technology to solve an old problem: the diagnosis of urinary tract infections -- the second most common bacterial infection -- in a clinically relevant timeframe.

In current laboratory practice, contaminating pathogens in urine specimens are grown in culture dishes until they can be visually identified. The major drawback of this century-old technique is the two-day time lag between specimen collection and bacteria identification. As a result, physicians must decide whether to prescribe antibiotic therapy and, if so, which type of bacteria to treat -- all without knowing the cause of the infection, if any. In contrast, the new biosensor technology would allow physicians to prescribe targeted treatment without the wait.

"Our research also showed that GeneFluidics’ biosensor avoided problems inherent in alternative molecular approaches, such as PCR, that require the repeated copying of bacterial DNA or RNA prior to testing. We found that these amplification methods do not provide reproducible results," said lead author Dr. Joseph C. Liao, clinical instructor of urology at the David Geffen School of Medicine at UCLA.

The clinical study was performed at the VA Greater Los Angeles Healthcare System in the laboratory of Dr. David Haake, VA staff physician and professor of medicine at UCLA. Researchers studied samples received by the UCLA Clinical Microbiology Laboratory.

Individual sensors on GeneFluidics’ 16-sensor chips were coated with UCLA-designed species-specific genetic probes. Clinical urine samples were directly applied to the chips and the electrochemical signal subsequently measured by GeneFluidics’ multi-channel reader instrument. The urinary tract infection pathogens were identified by examining which signals on the sensor chip were elevated. The entire experiment from sample collection to result read-out took only 45 minutes.

The potential for rapid bacterial detection was discovered in the laboratory of Dr. Edward McCabe, chair of pediatrics at the Mattel Children’s Hospital at UCLA and an adviser to GeneFluidics. McCabe’s group demonstrated that probes could bind to species-specific bacterial sequences within minutes, rather than hours. These exciting results were translated to the biosensor protocol, leading to the development of the biosensor for rapid identification of bacteria in urine from patients with urinary tract infections.

"Results were impressive for this initial 78-sample clinical study," said Dr. Bernard Churchill, chief of pediatric urology at the Clark-Morrison Children’s Urological Center at UCLA and principal investigator. "By coupling UCLA’s robust probes with GeneFluidics’ ultra sensitive biosensor system, we were able to identify urinary tract infection pathogens in a time frame that would enable physicians to make dramatically superior clinical decisions."

Ongoing work at UCLA and the VA Medical Center is focused on developing even better detection methods to bring the urinary tract infection biosensor chip from "bench to bedside." At GeneFluidics, engineers are integrating the biosensors into microfluidic cartridges and building a new instrument for faster and completely automated experimentation. The team anticipates the rapid test could become available in the next two to three years.

"There is considerable interest in decreasing overall health care costs by providing smarter medicine," added Dr. Vincent Gau, chief executive officer of GeneFluidics. "When laboratory-quality testing can be rapidly performed by anyone, anywhere, and the results made available in ’real-time,’ we will see tremendous improvement in patient care. This joint project with UCLA may spearhead that shift."

Urinary tract infection is the most common urological disease in the United States and the most common bacterial infection of any organ system. Urinary tract infection is a major cause of patient death and health care expenditure for all age groups, accounting for more than 7 million office visits and more than 1 million hospital admissions per year. In the hospital, catheter associated urinary tract infection accounts for 40 percent of all in-hospital acquired infections -- more than 1 million cases each year. The total cost of urinary tract infections to the United States health care system in 2000 was approximately 3.5 billion dollars.

The collaboration between UCLA, VA and GeneFluidics began in 2001, thanks to initial funding from Frank W. Clark Jr., and the Wendy and Ken Ruby Fund for Excellence in Pediatric Urology Research.

Subsequently, the work has been supported by a $5.6 million Bioengineering Research Partnership grant from the National Institute of Biomedical Imaging and Bioengineering.

Amy Waddell | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>