Preterm birth risk quickly and accurately detected with proteomic profiling

By profiling specific proteins in amniotic fluid for inflammation, researchers at Yale School of Medicine can quickly and accurately detect potentially dangerous infections in pregnant women, and also predict the possibility of premature birth.


The work will be presented at the 26th Annual Society for Maternal-Fetal Medicine (SMFM) meeting on February 2 by Catalin S. Buhimschi, M.D., assistant professor in the Department of Obstetrics, Gynecology & Reproductive Sciences. Buhimschi and his team will receive a March of Dimes Award for Best Research in Prematurity.

“This is one of the first tests of a proteomic profile in a prospective-blind fashion,” said Buhimschi. “One of the key advances in this research is that the test was done using fresh samples of amniotic fluid and not using banked amniotic fluid. This is a multidisciplinary approach that combines the basic science with clinical neonatology.”

Mass Restricted (MR) score is a specific proteomic profile used in the study. Presence of the biomarkers indicating inflammation in amniotic fluid can be established in 20 to 30 minutes. This test is much faster than the current method of testing microbiological cultures. If no biomarkers are present, then the pregnancy is uncomplicated.

Buhimschi and his team studied 164 fresh samples of amniotic fluid from 131 patients recruited consecutively with symptoms of premature labor. Proteins in a small sample of amniotic fluid were tested to find a link between the amniotic fluid glucose value, white blood cell count and the outcome of the fetus. An MR sore of three or four is highly predictive of adverse pregnancy outcome.

“We can now detect infections at a much more incipient stage with this proteomic profile,” said Buhimschi. “The presence of two biomarkers for inflammation indicates the median time for delivery is four days. If all the biomarkers for inflammation are present, delivery time occurs within hours. Studies to test treatment were not possible before. We now have to take it into the clinic and use the results of this test to provide a rapid treatment to the mother and its baby. This platform is also available to help diagnose other diseases.”

In addition to this abstract, Yale University has the most presentations at SMFM supported using funds obtained via extramural NIH mechanisms.

Media Contact

Karen N. Peart EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Simplified diagnosis of rare eye diseases

Uveitis experts provide an overview of an underestimated imaging technique. Uveitis is a rare inflammatory eye disease. Posterior and panuveitis in particular are associated with a poor prognosis and a…

Partners & Sponsors