Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find potential cause of breathing problems in Rett Syndrome children

14.12.2005


A multi-institutional team, led by University of Chicago researchers, has taken a crucial step toward understanding and treating Rett syndrome (RS), a rare and often-misdiagnosed neurodevelopmental disorder that affects 1 in 10,000 children, mostly females.



In a study published in the Dec. 14, 2005, issue of the Journal of Neuroscience, the researchers describe in a mouse model for RS the source of erratic breathing, which has important implications for children with RS.

Along with breathing problems, RS causes slowed brain and head growth, mental retardation, seizures, gait abnormalities and handwringing.


"It is absolutely tragic for the family," said Jan-Marino Ramirez, professor of organismal biology and anatomy at Chicago and lead author of the paper. "It’s a progressive disease that shows no mercy."

In order to study the breathing pattern more closely, Ramirez and his team showed that mice with the RS gene exhibit the same behavior as children: They breathe irregularly and stop breathing often.

According to Ramirez, one hypothesis that has dominated the thinking of many clinicians is that the erratic breathing is due to cortical problems. "It’s as if they want to stop breathing," he said. "Some clinicians went that far to suggest that it could be pleasurable for the child to stop breathing all of the time because they get a euphoric high. Or they do this because they’re agitated."

However, the researchers traced the problem not to the cortex but to the breathing center itself--in the medulla. The researchers isolated the breathing center from mutant mice and were able to demonstrate that the same erratic breathing pattern, which is so characteristic for RS, also was expressed in the isolated brain tissue, revealing the breathing center as the source of the problem.


They also found, specifically in the breathing center, a significantly decreased amount of the neuromodulator norepinephrine.

When Ramirez’s team added norepinephrine to the isolated breathing center, the breathing pattern normalized. "It became exactly as regular as the control-- this was amazing," he said. "This experiment shows that the breathing problem can potentially be treated because you can compensate for the missing neuromodulatory drive."

While Ramirez’s team worked with the brain tissue, his colleagues in France studied the animal.

Although they found the disturbance specifically in the medulla, many of those neurons project to other targets in the brain, which may explain why many other functions are affected.

Researchers noted that the disturbance in the breathing rhythm of the tissue occurs early on, before the animal exhibits breathing problems. They suggest that the nervous system may compensate initially for the loss of norepinephrine, which may be why breathing appears normal at the behavioral level. However, the deficiency in norepinephrine eventually disturbs other neuromodulators, including serotonin and substance P. As other modulatory systems become disrupted there will be a cascade of physiological problems in the animal’s developmental and autonomic systems, including the obvious disturbances in the breathing behavior itself.

According to Ramirez, it is not known how the mutation on the MECP2 gene, which was linked to RS in 1999, leads to the disturbance of the norepinephrine. "This is obviously one of the next issues that needs to be addressed in our experiments."

Ramirez also plans to start screening medications already on the market to treat the erratic breathing of the animal model, looking specifically at those drugs that treat both neural systems: norepinephrine and serotonin. (Substance P also will be affected since it is located in the same nerve cells as serotonin.)

Prozac, for example, is often prescribed to treat depression by boosting serotonin levels, as well as other drugs currently are used for attention deficit hyperactivity disorder that boost both serotonin and norepinephrine levels.

Scientists are eager to discover whether treating the erratic breathing of RS will affect any of the other problems associated with the disorder.

"I think it’s going to have a wider effect," Ramirez said, "because norepinephrine, serotonin and substance P are not only involved in breathing control, they’re also involved in many other functions, including motor control, which may help with the handwringing or if we are lucky, possibly also their walking.

"The breathing center is just one of the disturbed functions," he added. "It’s the tell tale sign."

Ramirez also plans to further investigate why these neurons are not releasing enough norepinephrine. "By understanding any of these neuromodulators, you’ll better understand a lot of childhood disorders."

Texas scientists, headed by Huda Zoghbi, located the mutated RS gene, MECP2, on the X chromosome in 1999. Since females have two X chromosomes, the normal version of the gene can compensate for much of the dysfunction. For boys there is no compensation; males die young, within the first year of life.

Severity of RS can vary. In some, RS is so serious that the child can no longer talk, sit or walk. Many children with RS die before they reach their teenage years, and breathing abnormalities are thought to be the leading cause.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>