Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find potential cause of breathing problems in Rett Syndrome children

14.12.2005


A multi-institutional team, led by University of Chicago researchers, has taken a crucial step toward understanding and treating Rett syndrome (RS), a rare and often-misdiagnosed neurodevelopmental disorder that affects 1 in 10,000 children, mostly females.



In a study published in the Dec. 14, 2005, issue of the Journal of Neuroscience, the researchers describe in a mouse model for RS the source of erratic breathing, which has important implications for children with RS.

Along with breathing problems, RS causes slowed brain and head growth, mental retardation, seizures, gait abnormalities and handwringing.


"It is absolutely tragic for the family," said Jan-Marino Ramirez, professor of organismal biology and anatomy at Chicago and lead author of the paper. "It’s a progressive disease that shows no mercy."

In order to study the breathing pattern more closely, Ramirez and his team showed that mice with the RS gene exhibit the same behavior as children: They breathe irregularly and stop breathing often.

According to Ramirez, one hypothesis that has dominated the thinking of many clinicians is that the erratic breathing is due to cortical problems. "It’s as if they want to stop breathing," he said. "Some clinicians went that far to suggest that it could be pleasurable for the child to stop breathing all of the time because they get a euphoric high. Or they do this because they’re agitated."

However, the researchers traced the problem not to the cortex but to the breathing center itself--in the medulla. The researchers isolated the breathing center from mutant mice and were able to demonstrate that the same erratic breathing pattern, which is so characteristic for RS, also was expressed in the isolated brain tissue, revealing the breathing center as the source of the problem.


They also found, specifically in the breathing center, a significantly decreased amount of the neuromodulator norepinephrine.

When Ramirez’s team added norepinephrine to the isolated breathing center, the breathing pattern normalized. "It became exactly as regular as the control-- this was amazing," he said. "This experiment shows that the breathing problem can potentially be treated because you can compensate for the missing neuromodulatory drive."

While Ramirez’s team worked with the brain tissue, his colleagues in France studied the animal.

Although they found the disturbance specifically in the medulla, many of those neurons project to other targets in the brain, which may explain why many other functions are affected.

Researchers noted that the disturbance in the breathing rhythm of the tissue occurs early on, before the animal exhibits breathing problems. They suggest that the nervous system may compensate initially for the loss of norepinephrine, which may be why breathing appears normal at the behavioral level. However, the deficiency in norepinephrine eventually disturbs other neuromodulators, including serotonin and substance P. As other modulatory systems become disrupted there will be a cascade of physiological problems in the animal’s developmental and autonomic systems, including the obvious disturbances in the breathing behavior itself.

According to Ramirez, it is not known how the mutation on the MECP2 gene, which was linked to RS in 1999, leads to the disturbance of the norepinephrine. "This is obviously one of the next issues that needs to be addressed in our experiments."

Ramirez also plans to start screening medications already on the market to treat the erratic breathing of the animal model, looking specifically at those drugs that treat both neural systems: norepinephrine and serotonin. (Substance P also will be affected since it is located in the same nerve cells as serotonin.)

Prozac, for example, is often prescribed to treat depression by boosting serotonin levels, as well as other drugs currently are used for attention deficit hyperactivity disorder that boost both serotonin and norepinephrine levels.

Scientists are eager to discover whether treating the erratic breathing of RS will affect any of the other problems associated with the disorder.

"I think it’s going to have a wider effect," Ramirez said, "because norepinephrine, serotonin and substance P are not only involved in breathing control, they’re also involved in many other functions, including motor control, which may help with the handwringing or if we are lucky, possibly also their walking.

"The breathing center is just one of the disturbed functions," he added. "It’s the tell tale sign."

Ramirez also plans to further investigate why these neurons are not releasing enough norepinephrine. "By understanding any of these neuromodulators, you’ll better understand a lot of childhood disorders."

Texas scientists, headed by Huda Zoghbi, located the mutated RS gene, MECP2, on the X chromosome in 1999. Since females have two X chromosomes, the normal version of the gene can compensate for much of the dysfunction. For boys there is no compensation; males die young, within the first year of life.

Severity of RS can vary. In some, RS is so serious that the child can no longer talk, sit or walk. Many children with RS die before they reach their teenage years, and breathing abnormalities are thought to be the leading cause.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>