Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squinting while staring at a computer monitor can cause painful dry eye

29.11.2005


Squinting at a computer screen can cut in half the number of times someone blinks each minute. And that could lead to an irritating condition called dry eye, new research suggests.



The more that the participants in this study squinted their eyes, the less they blinked. And the less they blinked, the more their eyes ached or burned, and the more they reported sensations of dryness, irritation and tearing.

Just a slight amount of squinting reduced blink rates by half, from 15 blinks a minute to 7.5 blinks a minute.


“People tend to squint when they read a book or a computer display, and that squinting makes the blink rate go way down,” said James Sheedy, the study’s lead author and a professor of optometry at Ohio State University. “Blinking rewets the eyes. So if your job requires a lot of reading or other visually intense work, you may be blinking far less than normal, which may cause eye strain and dry eye.”

Squinting serves two purposes: It improves eyesight by helping to more clearly define objects that are out of focus. It also cuts down on the brightness from sources of glare. It may be voluntary or involuntary – a person working at a computer may not realize that he is squinting.

Dry eye is usually treatable with over-the-counter eye drops. It’s rarely a debilitating condition, but it can be irritating and painful.

The results appear in a recent issue of the journal Optometry and Vision Science. Sheedy conducted the study with Ohio State colleagues Sowjanya Gowrisankaran, a graduate student, and John Hayes, a research scientist in optometry.

The researchers asked 10 college students to squint at different levels. All participants had 20/20 vision in both eyes. The researchers attached two tiny electrodes to the lower eyelids of each student. The electrodes were also attached to an electromyogram, a machine that records the electrical activity of muscles. In this case, the researchers wanted to record the action of the orbicularis oculi muscle, which encircles the eye socket and allows the eye to both blink and squint. The electromyogram measured the different degrees of squint.

The researchers also videotaped the blinking students.

Participants were situated in a chin and forehead rest – doing so let them relax their head and neck while squinting at the various levels. Subjects were asked to look directly at a computer screen situated about two feet in front of their eyes.

The researchers recorded data from five trials. For the first trial, participants were asked to completely relax their eyes. For the next four trials, students squinted in increments ranging from 5 percent (barely squinting) to 50 percent (eyes closed about half-way.)

Participants were also instructed to continuously look at a black dot in the center of a computer display. They listened to music while a changing pattern, which was driven by the music, moved around the black dot.

At the end of the trials, the researchers watched the videotapes and counted the number of times each student had blinked during the trials.

Blink rates decreased from an average of 15 blinks per minute when the eyes were relaxed to 7.5 blinks a minute when students squinted just 5 percent. That number was reduced to four blinks a minute when participants squinted at the 50 percent level.

Sheedy said that the next step is to figure out the physiological mechanisms behind eye strain and dry eye.

“The neural pathways leading to eyelid blink aren’t completely understood,” he said. “And the mechanisms controlling blink seem numerous and complex.”

This study was supported by a grant from Microsoft Corp. Neither Sheedy nor his co-authors have ties to Microsoft beyond the scope of this study.

James Sheedy | EurekAlert!
Further information:
http://www.optometry.osu.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>