Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FLT-1 blockers, cutting the legs of leukaemia

15.11.2005


Leukaemia is characterised by an uncontrolled growth of abnormal blood cells in the bone marrow (BM). Escape of the cancerous cells to other organs is linked with worst disease prognosis and less susceptibility to therapy, and, as consequence, to understand the mechanism(s) behind such migration is crucial. And now, in an advance online publication of the journal "Blood", a group of researchers has found that FLT-1 - a molecule implicated in blood vessel growth – is necessary for the escape of the leukaemia cells from the BM, suggesting that blocking of this molecule might be used in the treatment of leukemia.



Leukaemia, or cancer of the white blood cells, affects 4 out of 100,000 people worldwide and in the United States alone more than 2,000 children and 27,000 adults are diagnosed with the disease every year. The illness originates from an abnormal multiplication of the cancerous cells in the BM that leaves little no space for normal blood cells to grow resulting in an impaired immune system that, among other problems, is incapable of efficiently fight infection.

It is known that leukaemia development, like it happens with solid tumours, depends on the development of extra blood vessels (a process known as vascularisation), which serve to supply the fast multiplying cancerous cells with nutrients and help rapid cancer expansion and often metastasis formation. Interestingly, it has also been found that molecules involved in vascularisation seem to be capable of act directly on the cancerous cells. One such example is VEGF (Vascular Endothelial Growth Factor) that appears to affect division, survival and migration of cancer cells and consequently cancer growth and dissemination.


FLT-1 or “Vascular endothelial growth factor receptor”, which binds to VEGF, is another molecule involved in vascularisation that has been suggested to have a role in the division and migration of cancer cells. This observation, together with the fact that FLT-1 is produced in high quantities by leukaemia cells, have led Rita Fragoso, Teresa Pereira, Sérgio Dias and colleagues in Portugal and the United States to investigate the role of FLT-1 in this disease.

For that the group of investigators used cells from patients with ALL, the most common childhood leukaemia, and one in which the abnormally proliferating cells are immature blood cells called lymphoblasts. Cells from different ALL patients, which produced distinct amounts of FLT-1, were injected into mice with no blood cells and followed in order to understand how different quantities of this molecule could affect cell fate and disease progression.

What they found was that FLT-1 levels influenced both migration and cell survival, and therefore also disease outcome.

In fact, cells expressing high quantities of FLT-1 were found in the “exit area” of the BM (from where blood cells migrate into the periphery), in the peripheral circulation and also in other organs, such as the spleen and liver. Cells with low or no FLT-1, on the other hand, stayed within the BM where part of them die. As consequence, animals injected with these last cells presented a slower spread of leukaemia and a higher survival rate than animals injected with cells producing high quantities of FLT-1. Further experiments showed that the different patterns of migration were associated with a gradient of VEGF (which binds FLT-1) found throughout the BM.

What these results showed for the first time was that the localisation of different subsets of leukaemia cells within the BM was dependent on their FLT-1 production, and that different localisations affected cell survival and leukemia expansion and consequently also the survival of animals/patients suffering from the disease.

This work has helped to understand better the biology of leukaemia cells within the BM, how they behave and why, and also the importance of what happens within this organ in disease severity and treatment susceptibility. In fact, migration of ALL cells to outside of the BM not only correlates with a more severe disease but also with a worst response to treatment, since these cells will be less accessible to therapy when spread throughout the body than when restricted to a small area.

But what is more important is that, in view of Fragoso, Pereira, Dias and colleagues’ results, FLT-1 blockers appear as a promising new treatment against leukaemia. And if they are used in combination with chemotherapy they will be able – as result of the cells being more readily available to the injected drugs when stopped within the BM- to increase treatment effectiveness what is certainly good news to patients all over the world.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.bloodjournal.org/cgi/reprint/2005-06-2530v1

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>