Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FLT-1 blockers, cutting the legs of leukaemia

15.11.2005


Leukaemia is characterised by an uncontrolled growth of abnormal blood cells in the bone marrow (BM). Escape of the cancerous cells to other organs is linked with worst disease prognosis and less susceptibility to therapy, and, as consequence, to understand the mechanism(s) behind such migration is crucial. And now, in an advance online publication of the journal "Blood", a group of researchers has found that FLT-1 - a molecule implicated in blood vessel growth – is necessary for the escape of the leukaemia cells from the BM, suggesting that blocking of this molecule might be used in the treatment of leukemia.



Leukaemia, or cancer of the white blood cells, affects 4 out of 100,000 people worldwide and in the United States alone more than 2,000 children and 27,000 adults are diagnosed with the disease every year. The illness originates from an abnormal multiplication of the cancerous cells in the BM that leaves little no space for normal blood cells to grow resulting in an impaired immune system that, among other problems, is incapable of efficiently fight infection.

It is known that leukaemia development, like it happens with solid tumours, depends on the development of extra blood vessels (a process known as vascularisation), which serve to supply the fast multiplying cancerous cells with nutrients and help rapid cancer expansion and often metastasis formation. Interestingly, it has also been found that molecules involved in vascularisation seem to be capable of act directly on the cancerous cells. One such example is VEGF (Vascular Endothelial Growth Factor) that appears to affect division, survival and migration of cancer cells and consequently cancer growth and dissemination.


FLT-1 or “Vascular endothelial growth factor receptor”, which binds to VEGF, is another molecule involved in vascularisation that has been suggested to have a role in the division and migration of cancer cells. This observation, together with the fact that FLT-1 is produced in high quantities by leukaemia cells, have led Rita Fragoso, Teresa Pereira, Sérgio Dias and colleagues in Portugal and the United States to investigate the role of FLT-1 in this disease.

For that the group of investigators used cells from patients with ALL, the most common childhood leukaemia, and one in which the abnormally proliferating cells are immature blood cells called lymphoblasts. Cells from different ALL patients, which produced distinct amounts of FLT-1, were injected into mice with no blood cells and followed in order to understand how different quantities of this molecule could affect cell fate and disease progression.

What they found was that FLT-1 levels influenced both migration and cell survival, and therefore also disease outcome.

In fact, cells expressing high quantities of FLT-1 were found in the “exit area” of the BM (from where blood cells migrate into the periphery), in the peripheral circulation and also in other organs, such as the spleen and liver. Cells with low or no FLT-1, on the other hand, stayed within the BM where part of them die. As consequence, animals injected with these last cells presented a slower spread of leukaemia and a higher survival rate than animals injected with cells producing high quantities of FLT-1. Further experiments showed that the different patterns of migration were associated with a gradient of VEGF (which binds FLT-1) found throughout the BM.

What these results showed for the first time was that the localisation of different subsets of leukaemia cells within the BM was dependent on their FLT-1 production, and that different localisations affected cell survival and leukemia expansion and consequently also the survival of animals/patients suffering from the disease.

This work has helped to understand better the biology of leukaemia cells within the BM, how they behave and why, and also the importance of what happens within this organ in disease severity and treatment susceptibility. In fact, migration of ALL cells to outside of the BM not only correlates with a more severe disease but also with a worst response to treatment, since these cells will be less accessible to therapy when spread throughout the body than when restricted to a small area.

But what is more important is that, in view of Fragoso, Pereira, Dias and colleagues’ results, FLT-1 blockers appear as a promising new treatment against leukaemia. And if they are used in combination with chemotherapy they will be able – as result of the cells being more readily available to the injected drugs when stopped within the BM- to increase treatment effectiveness what is certainly good news to patients all over the world.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.bloodjournal.org/cgi/reprint/2005-06-2530v1

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>