Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’eye movement’ test may help treat fetal alcohol syndrome

14.11.2005


Tool is more objective, accurate in identifying children affected by



A simple test that measures eye movement may help to identify children with Fetal Alcohol Spectrum Disorder (FASD) and ultimately lead to improved treatment for the condition, say Queen’s University researchers.

At present there are no objective diagnostic tools that can be used to distinguish between children with FASD – which affects approximately one per cent of children in Canada – and those with other developmental disorders such as Attention-Deficit Hyperactivity Disorder (ADHD).


Researcher James Reynolds and graduate student Courtney Green, of the Department of Pharmacology and Toxicology and the Centre for Neuroscience Studies, will present their findings next week at the annual meeting of the international Society for Neuroscience in Washington, D.C.

"Having a set of tests that can be used as diagnostic tools for fetal alcohol syndrome and all of the other behavioural disorders classified under the broader term fetal alcohol spectrum disorder is tremendously valuable," says Dr. Reynolds, who is part of a $1.25-million Queen’s-led team focusing on fetal alcohol syndrome, funded by the Canadian Institutes of Health Research. "Now we can begin to identify specific deficits in these children."

Many of the behavioural tests used to assess children with FASD are geared to white, middle-class English-speaking people, notes Ms Green. "The biggest problem [in current tests] is cultural insensitivity," she says. "By measuring eye movement we can cut across cultural barriers and provide objectivity in identifying the disorder."

In a pilot study involving 25 girls and boys aged eight to 12, the Queen’s team found that children with FASD have specific brain abnormalities which can be measured with eye movement testing. Defined as "birth defects resulting from a mother’s consumption of alcohol during pregnancy", fetal alcohol syndrome is associated with hyperactivity, difficulty in learning and deficits in memory, understanding and reasoning, as well as problems dealing with stressful situations.

The next stage of the Queen’s research will be to make the eye movement test mobile and transport it to targeted areas, such as northern and rural parts of Ontario, where FASD is believed to be more prevalent. The researchers envision this as a multi-centre project, in which other participants will work from the same set of pooled data.

"There is a clear need to develop new tools that can be used to reliably and objectively measure the brain injury of FASD," says Dr. Reynolds. "Ideally, these tools need to be mobile, inexpensive, and easy to use, for both diagnosis and the long-term evaluation of therapeutic interventions. Eye movements are ideally suited for this purpose."

Using the new functional MRI facility at Queen’s, the team will then be able to measure differences in brain activity between children with fetal alcohol syndrome and those with other developmental disorders such as ADHD.

"Having access to this facility will have a huge impact on our research program," Dr. Reynolds says. "It allows us to create an integrated research strategy for carrying out studies to provide functional brain imaging data that can be directly related to neuro-behavioural deficits in individual children with FASD."

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>