Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF surgeon develops new spinal surgery technique

07.11.2005


UCSF surgeons are using a novel technique to remove tumors from the cervical region of the spine that were previously thought "inoperable."

Called a lateral paramedian transpedicular approach, the technique uses advances in spinal instrumentation and reconstructive strategies to provide a direct approach to the removal of cervical spinal tumors with minimal, or no, neural manipulation.

The procedure is reported in the November issue of Operative Neurosurgery. UCSF is the only medical institution in the United States where patients can undergo this surgery.



Developed by neurosurgeon Christopher Ames, MD, co-director of neurospinal disorders and director of the Spinal Biomechanics and Spinal Neuronavigation Laboratory at UCSF Medical Center, the surgery uses standard and innovative devices to first remove and then reconstruct portions of the cervical spine in order to access tumors. Once the bone is removed, surgeons have a direct line of sight to the tumor and are able to remove it in its entirety without having to move or manipulate the spinal cord.

After the tumor is removed, surgeons immediately rebuild the spine with artificial pedicle screws, a reconstruction technique also developed by Ames. The technique is particularly useful in cases in which the tumor is located in the middle of the spinal canal and attached to the lining of the spine. These types of tumors include meningiomas, neurofibromas and exophytic astrocytomas.

Patient Stacey Hall recently underwent surgery to remove a neurofibroma, a usually benign tumor of the peripheral nerves. Hall’s tumor caused her skin to be acutely sensitive to touch, her hands to experience numbness, and her legs to collapse from under her at times. "The damage was so severe, the slightest breeze against my skin caused me excruciating pain," said Hall. "The first thing I noticed after my surgery was that my skin no longer hurt for the first time in more than a year."

Most of the surgeries to date have been done on patients with conditions similar to Hall. Neurofibromas can occur as a sporadic condition or as a genetic disorder such as neurofibromatosis. While a common type of spinal tumor, neurofibromas are challenging lesions to approach surgically, according to Ames. Found at the base of the skull on or near the spine, the tumors often sit just below the brain stem and press against the spinal cord as they grow.

Some tumors span several vertebral levels. In time, the pressure against the spinal cord can cause pain, numbness and loss of mobility in the hands, arms and legs. If left untreated, patients can become paralyzed. Because of the proximity to sensitive anatomy including the spinal cord, pharynx, nerves, and major blood vessels, surgeons often refuse to operate for fear of causing irreversible nerve damage, paralysis and even death, Ames noted, and as a result, patients presenting with extensive intradural tumors are often left without hope.

"We are treating patients with this technique who were told by physicians that nothing more could be done," said Ames. "The next step is to train other surgeons in the technique so it is accessible to patients throughout the country."

Ames specializes in spinal reconstructive surgery for trauma, tumors and degenerative disease. His research focuses on new techniques for computer-guided, minimally invasive instrumentation and development of resorbable materials for spine stabilization and growth factor delivery. He is the first surgeon in California to do a percutaneous pre-sacral fusion, of which there have been less than 15 in the country. Ames completed a complex spine fellowship at the Barrow Neurological Institute in Phoenix, Arizona.

Vanessa deGier | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>