Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice give skin cancer clue

25.09.2001


Mice work says keep kids safe from the sun.
© Photodisc


Mouse studies emphasize children’s cancer risk from sunburn.

Serious sunburn in childhood may raise the risk of developing the deadliest form of skin cancer as an adult, research in mice suggests1. The experiments could lead to a better understanding of malignant melanoma and of how and when to protect ourselves from the sun.

"I have my kids wear hats and put sunscreen on like crazy now," says the study’s leader Glenn Merlino, of the National Cancer Institute in Bethesda, Maryland. The differences between mice and human skin mean that caution is needed in interpreting the results, he says, but they still hold lessons for parents.



Merlino’s team has engineered mice with "the closest thing we see to human skin", he says. Melanocytes, the pigment-producing cells that become cancerous in melanoma, are spread through the rodents’ skin as they are in humans. Normal mouse skin is quite different.

Mice given a sunburn-inducing dose of ultraviolet light at 3.5 days of age began to develop melanomas at around 6 months old. By a year of age, about half of these mice had cancer. Six-week-old mice given the same amount of ultraviolet light did not develop tumours.

The human equivalents of these mouse ages is not yet clear. The team aims to study exposure over a wider range of times to work out when young humans may be most at risk from sunburn.

The dangers of childhood sunburn are well known, says dermatologist Rona Mackie of the University of Glasgow, UK. "We’ve preached for years that young children are particularly vulnerable," she says. The age-related association between sunburn and melanoma contrasts with other forms of skin cancer, in which the risk rises more steadily with overall exposure to the sun.

Mackie believes this mouse model may help discover how ultraviolet light leads to cancer. Sunburn could turn melanocytes cancerous directly, or it might render the immune system unable to destroy cancer cells when they appear later, she says.

Such an understanding might yield therapies for repairing sunburn damage, Mackie adds.

References

  1. Noonan, F. P. et al. Neonatal sunburn and melanoma in mice. Nature, 413, 271 - 272, (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/010920/010920-10.html

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>