Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DCU world class “early-warning” research on cancer, diabetes and heart disease gets €22.5m boost

19.10.2005


Revolutionary new self-diagnostic devices to provide early warning of deadly and debilitating illnesses like cancer, diabetes and heart disease are the aim of a €22.5m Science Foundation Ireland research facility to be established at Dublin City University.



The Biomedical Diagnostics Institute will carry out cutting-edge research to develop this range of next-generation biomedical devices that will directly affect the quality of people’s lives worldwide over the next decades.

SFI will provide funding of €16.5m - the largest SFI funding ever granted in this kind of project - and six industrial partners will provide a further €6m through a scientific collaboration, positioning Ireland to make a major breakthrough in the €20 billion global diagnostics market.


The diagnostic devices and sensors will aim to detect minute concentrations of disease related molecules in biological samples like blood, saliva, and breath.

The programme led by DCU Professor Brian MacCraith will include top research scientists from Dublin City University, the Royal College of Surgeons, National University of Ireland, Galway and University College Cork.

They will use novel “markers” for human disease that can be detected by special consumer home-testing devices “well in advance of the onset of clinical symptoms,” says Professor MacCraith. “All the elements for a successful research environment have been put together. An exciting blend of scientists, teams, and industrial partners lends itself to a high probability of success.”

“Ultimately, the combined scientific challenge lies primarily in creating reliable, miniaturised systems in which the presence of very low concentrations of disease–related molecules in a sample of blood, urine, sweat, saliva and breath, can be detected with exquisite sensitivity, ” he added.

Launching the new research centre, the Minister for Enterprise and Employment Micheal Martin said: “These devices will detect life–threatening events long before a critical stage is reached. They will allow chronic diseases to be controlled more effectively, thereby reducing hospital stays and saving lives. In many cases, the devices will be linked via advanced communications technologies to monitoring services which will provide speedy expert assessment.”

The Medical and Device and Diagnostics sector represents a vibrant growth area within the Irish economy already, with over 40 companies in the field, including 13 of the top 25 medical device and diagnostics companies in the world. The sector now employs 22,000 and has been highlighted as of the areas in which Ireland can grow significantly.

At the launch, Dr William C Harris, Director General of SFI said this initiative would have far- reaching implications for the Irish economy. “The medical device and diagnostics sector represents a vibrant growth area – one in which Ireland can develop a position of competitive strength and critical mass.”

More than 50 scientists will be involved in the programme, the majority based at DCU with an additional 10 from the industrial partners.

There are five core scientific programmes led by three DCU Professors, Brian MacCraith, Robert Forster, and Richard O Kennedy, Professor Dermot Kenny of RCSI, and Professor Luke Lee from UC Berkley who will carry out an SFI funded research Professorship at DCU over the next five years.

The research will focus on the use of high sensitivity biochips for cancer detection and cardiac “wellness” as well as novel (blood) coagulation monitoring systems. This critical research programme has six industrial partners, Becton Dickinson and Company, Hospira Inc, Inverness Medical Innovations Inc, Analog Devices Incorporated, Amic AB and Enfer Technology Limited.

In 2004 Professor MacCraith’s research group won €5.6m from SFI to establish the initial team and carry out development work. Today’s announcement is for €16.5m from SFI initially, with the potential of further substantial additional SFI funding.

During the initial phase Professor MacCraith’s team has already made substantial progress giving Ireland a recognised leading role in sensor research. A new set of Intellectual Property principles has been developed to cover the commercialisation of discoveries. The new approach is based on an “inventor owns” model, with arrangements for shared discoveries, and a model which incentivises all parties.

Professor MacCraith says the IP principles fully protect DCU and partner interests as well the interests of Irish taxpayers who are ultimately providing most funding for the new centre.

Change in the way clinical services are delivered and in laboratory services as well as better-informed patients have resulted in a move to patient-centred care. These factors and pressure on costs have brought about a greater emphasis on primary care and reduced focus on hospitals to deliver clinical care.

In the longer term, the proposed research programme will lead to miniaturised devices that can be inserted inside the body for long periods to provide important information about the patient’s well-being using advanced e-health communications technology.

Another emerging area is the field of personalised medicine with tailored medical therapies devised after specific diagnosis of the genetic variation of the patient. The centre programme also includes key educational and outreach developments from primary to third level with health starter programmes for children, second level teacher and student internships, special undergraduate courses and a new postgraduate MSc in diagnostics.

Shane Kenny | alfa
Further information:
http://www.dcu.ie

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>