Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DCU world class “early-warning” research on cancer, diabetes and heart disease gets €22.5m boost

19.10.2005


Revolutionary new self-diagnostic devices to provide early warning of deadly and debilitating illnesses like cancer, diabetes and heart disease are the aim of a €22.5m Science Foundation Ireland research facility to be established at Dublin City University.



The Biomedical Diagnostics Institute will carry out cutting-edge research to develop this range of next-generation biomedical devices that will directly affect the quality of people’s lives worldwide over the next decades.

SFI will provide funding of €16.5m - the largest SFI funding ever granted in this kind of project - and six industrial partners will provide a further €6m through a scientific collaboration, positioning Ireland to make a major breakthrough in the €20 billion global diagnostics market.


The diagnostic devices and sensors will aim to detect minute concentrations of disease related molecules in biological samples like blood, saliva, and breath.

The programme led by DCU Professor Brian MacCraith will include top research scientists from Dublin City University, the Royal College of Surgeons, National University of Ireland, Galway and University College Cork.

They will use novel “markers” for human disease that can be detected by special consumer home-testing devices “well in advance of the onset of clinical symptoms,” says Professor MacCraith. “All the elements for a successful research environment have been put together. An exciting blend of scientists, teams, and industrial partners lends itself to a high probability of success.”

“Ultimately, the combined scientific challenge lies primarily in creating reliable, miniaturised systems in which the presence of very low concentrations of disease–related molecules in a sample of blood, urine, sweat, saliva and breath, can be detected with exquisite sensitivity, ” he added.

Launching the new research centre, the Minister for Enterprise and Employment Micheal Martin said: “These devices will detect life–threatening events long before a critical stage is reached. They will allow chronic diseases to be controlled more effectively, thereby reducing hospital stays and saving lives. In many cases, the devices will be linked via advanced communications technologies to monitoring services which will provide speedy expert assessment.”

The Medical and Device and Diagnostics sector represents a vibrant growth area within the Irish economy already, with over 40 companies in the field, including 13 of the top 25 medical device and diagnostics companies in the world. The sector now employs 22,000 and has been highlighted as of the areas in which Ireland can grow significantly.

At the launch, Dr William C Harris, Director General of SFI said this initiative would have far- reaching implications for the Irish economy. “The medical device and diagnostics sector represents a vibrant growth area – one in which Ireland can develop a position of competitive strength and critical mass.”

More than 50 scientists will be involved in the programme, the majority based at DCU with an additional 10 from the industrial partners.

There are five core scientific programmes led by three DCU Professors, Brian MacCraith, Robert Forster, and Richard O Kennedy, Professor Dermot Kenny of RCSI, and Professor Luke Lee from UC Berkley who will carry out an SFI funded research Professorship at DCU over the next five years.

The research will focus on the use of high sensitivity biochips for cancer detection and cardiac “wellness” as well as novel (blood) coagulation monitoring systems. This critical research programme has six industrial partners, Becton Dickinson and Company, Hospira Inc, Inverness Medical Innovations Inc, Analog Devices Incorporated, Amic AB and Enfer Technology Limited.

In 2004 Professor MacCraith’s research group won €5.6m from SFI to establish the initial team and carry out development work. Today’s announcement is for €16.5m from SFI initially, with the potential of further substantial additional SFI funding.

During the initial phase Professor MacCraith’s team has already made substantial progress giving Ireland a recognised leading role in sensor research. A new set of Intellectual Property principles has been developed to cover the commercialisation of discoveries. The new approach is based on an “inventor owns” model, with arrangements for shared discoveries, and a model which incentivises all parties.

Professor MacCraith says the IP principles fully protect DCU and partner interests as well the interests of Irish taxpayers who are ultimately providing most funding for the new centre.

Change in the way clinical services are delivered and in laboratory services as well as better-informed patients have resulted in a move to patient-centred care. These factors and pressure on costs have brought about a greater emphasis on primary care and reduced focus on hospitals to deliver clinical care.

In the longer term, the proposed research programme will lead to miniaturised devices that can be inserted inside the body for long periods to provide important information about the patient’s well-being using advanced e-health communications technology.

Another emerging area is the field of personalised medicine with tailored medical therapies devised after specific diagnosis of the genetic variation of the patient. The centre programme also includes key educational and outreach developments from primary to third level with health starter programmes for children, second level teacher and student internships, special undergraduate courses and a new postgraduate MSc in diagnostics.

Shane Kenny | alfa
Further information:
http://www.dcu.ie

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>