Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UU Scientists Developing Breakthrough Diabetes Drugs

07.10.2005


University of Ulster scientists are developing innovative drugs that could represent important new therapeutic tools to help ease the burden of diabetes worldwide. The news comes as a UN World Health Organisation report identifies diabetes as one of the major health issues facing the world in the 21st century.



The research team at UU have discovered that modified-forms of GIP, a naturally occurring molecule produced by the body, can combat key symptoms of diabetes. This stimulated the formation of a new company to develop production of new anti-diabetic agents.

Current statistics report some 150 million diagnosed cases of diabetes worldwide, and that figure is set to double within 20 years, according Dr Neville McClenaghan, a prime mover in the new company Diabetica Limited.


“The holy grail of diabetes treatment is safe and effective management of blood glucose. We believe that novel molecules arising from our platform GIP technology should provide effective new tools to help individuals better control the condition known as Type 2 diabetes,” he said.

“That’s really what physicians are looking for at the minute - new drugs that offer improvements or enhancement over current drugs.”

Diabetes is a complex metabolic disorder clinically defined by high blood glucose levels resulting from a relative or absolute absence of insulin-production coupled with defective insulin action in body tissues. The latter is a defining characteristic of the ‘metabolic syndrome’ and is an important link between Type 2 diabetes and other conditions including obesity, heart disease and stroke.

In diabetes there is a breakdown in the person’s ability to regulate blood-glucose levels, and thus pharmacological treatments are required to bring the blood glucose levels back down to safe levels.

The main pharmacological approaches to the treatment of diabetes are focussed on replacing insulin by injection or the use of drugs, which either increase circulating insulin or enhance its action on insulin-sensitive tissues.

“Diabetes and the related conditions, metabolic syndrome and obesity, are reaching epidemic proportions and thus are major healthcare challenges. This clearly prompts the development of new and innovative approaches for effective management and treatment of this complex disease” said Dr McClenaghan.

Years of research by the team at UU have culminated in two distinct therapeutic products developed from the gut peptide, GIP, which is released into the blood following eating. Preclinical studies have revealed that both therapeutic products exhibit potent glucose-lowering actions mediated by either increasing circulating insulin or enhancing insulin action.

“We have discovered that strategic bio-engineering of the GIP molecule can generate stable long-acting forms with two principal modes of anti-diabetic action and have patent-protected the technology,” he said.

“Diabetica’s therapeutic GIP products have generated a lot of interest. GIP-based therapies are exciting new approaches which offer considerable advantages over existing and emerging diabetes/obesity therapies, which suffer from shortcomings such as poor efficacy, difficult dosing regimens and adverse side effects. This is a very exciting time for Diabetica as our two novel GIP drugs - Incretide and Metalog - could provide a major advance in the effective management of diabetes, metabolic syndrome and obesity.”

The co-founders of Diabetica Limited - Professor Peter Flatt, Professor Finbarr O’Harte and Dr Neville McClenaghan - established the Coleraine-based biotechnology company last year as a first step to achieving a sound commercial footing for product development.

In June, the University’s technology transfer arm, UUTech Limited and Seroba BioVentures Limited, a life sciences venture capital fund, announced that they would provide funding for Diabetica’s pre-clinical testing programmes.

Dr McClenaghan said: “We now wish to take our GIP drugs through formal clinical evaluation. Clinical trials are a vital step along the way to full approval and prescribed use of any drug. Diabetica’s GIP drugs, Incretide and Metalog, are two distinctly different products addressing the major unmet need for “smart therapeutics” whose actions are regulated by circulating levels of blood glucose. Thus, we anticipate that Incretide and Metalog will offer the individual immediate advantages associated with better control of blood glucose levels and reducing the likelihood of development of complications associated with long-term hyperglycaemia.”

The increasing global incidence of diabetes has led to major investments by the bio-pharmaceutical industry to develop and acquire therapeutic, drug delivery and diagnostic solutions for diabetes and obesity, creating significant opportunities for Diabetica’s novel therapeutics as the anti-diabetic and anti-obesity drugs of tomorrow.

Brian O’Connor, Chairman of UUTech said: “UUTech is pleased at the progress made so far and will work to ensure that Diabetica has the best possible chance of success during the development phase of this exciting science over the next several years."

“We are delighted with the validation this funding gives to our technology,” said Matt O’Driscoll, Chief Executive Officer of Diabetica. “This is the first stage in a fundraising and corporate partnering campaign over the next 12 months designed to push the development of our lead GIP molecules into the clinic.”

David Young | alfa
Further information:
http://www.ulster.ac.uk
http://www.ulster.ac.uk/news/releases/2005/1860.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>