Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue recreated with balls of gelatin

31.08.2005


Repairing major damage to the derma is a difficult problem facing plastic surgeons. But now researchers at Linköping University have hit upon a highly promising method. By injecting tiny balls of gelatin, they have managed to get various types of cells to grow spontaneously in the areas where new tissue needs to be generated.



Instead of moving skin from other parts of the body or operating in prostheses of non-biological material, it is becoming more and more common for plastic surgeons to cultivate the patient’s own cells to make repairs. In burn injuries, for example, derma cells are cultivated from epithelium cells and then grow onto the surface of the wound.

But to go deeper, other methods are called for. The research team at Linköping University has studied various ways to cultivate the cell type needed in a matrix, a “scaffolding,” and then to apply it to the body. The best results were attained using porous spheres of micro format (a few hundredths of a millimeter in diameter) consisting of gelatin­-a substance that occurs naturally in the human body. (Images are available)


“These spheres offer multiple advantages. Enormous numbers of cells can be cultivated in the gelatin, and the material can also be injected in the patient,” says Fredrik Huss, a plastic surgeon in training who describes the method in his doctoral dissertation to be defended on September 2.

All types of cells attempted grew extremely well in the gelatin balls: skin cells, connecting tissue cells, cartilage cells, early stages of fat cells, and mammary gland cells. Experiments with transplanting in mice also yielded favorable results. Injection under the skin of spheres containing connecting tissue cells and fat cells led to good regeneration of tissue. But it is not even necessary to cultivate the cells in advance. Empty balls were injected into the upper arm of healthy volunteers. For comparison, saline solution and Resylane, a commonly used anti-wrinkle substance, were injected. The result was excellent regeneration of tissue inside the spheres, which were then degraded and disappeared, and there were no signs of rejection. On the other hand, Restylane injection produced no new generation of tissue.

“Our findings open up tremendous potential for the repair of soft body parts. It is a simpler and more dependable method than the fat transplants carried out today,” says Fredrik Huss, who, together with Elof Eriksson, is participating in an international research conference on tissue engineering TERM 2005, arranged by Linköping University. For the program, see http://www.liu.se/forskning/filer/program-term2.pdf.

Åke Hjelm | alfa
Further information:
http://www.liu.se

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>