Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue recreated with balls of gelatin

31.08.2005


Repairing major damage to the derma is a difficult problem facing plastic surgeons. But now researchers at Linköping University have hit upon a highly promising method. By injecting tiny balls of gelatin, they have managed to get various types of cells to grow spontaneously in the areas where new tissue needs to be generated.



Instead of moving skin from other parts of the body or operating in prostheses of non-biological material, it is becoming more and more common for plastic surgeons to cultivate the patient’s own cells to make repairs. In burn injuries, for example, derma cells are cultivated from epithelium cells and then grow onto the surface of the wound.

But to go deeper, other methods are called for. The research team at Linköping University has studied various ways to cultivate the cell type needed in a matrix, a “scaffolding,” and then to apply it to the body. The best results were attained using porous spheres of micro format (a few hundredths of a millimeter in diameter) consisting of gelatin­-a substance that occurs naturally in the human body. (Images are available)


“These spheres offer multiple advantages. Enormous numbers of cells can be cultivated in the gelatin, and the material can also be injected in the patient,” says Fredrik Huss, a plastic surgeon in training who describes the method in his doctoral dissertation to be defended on September 2.

All types of cells attempted grew extremely well in the gelatin balls: skin cells, connecting tissue cells, cartilage cells, early stages of fat cells, and mammary gland cells. Experiments with transplanting in mice also yielded favorable results. Injection under the skin of spheres containing connecting tissue cells and fat cells led to good regeneration of tissue. But it is not even necessary to cultivate the cells in advance. Empty balls were injected into the upper arm of healthy volunteers. For comparison, saline solution and Resylane, a commonly used anti-wrinkle substance, were injected. The result was excellent regeneration of tissue inside the spheres, which were then degraded and disappeared, and there were no signs of rejection. On the other hand, Restylane injection produced no new generation of tissue.

“Our findings open up tremendous potential for the repair of soft body parts. It is a simpler and more dependable method than the fat transplants carried out today,” says Fredrik Huss, who, together with Elof Eriksson, is participating in an international research conference on tissue engineering TERM 2005, arranged by Linköping University. For the program, see http://www.liu.se/forskning/filer/program-term2.pdf.

Åke Hjelm | alfa
Further information:
http://www.liu.se

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>