Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue recreated with balls of gelatin

31.08.2005


Repairing major damage to the derma is a difficult problem facing plastic surgeons. But now researchers at Linköping University have hit upon a highly promising method. By injecting tiny balls of gelatin, they have managed to get various types of cells to grow spontaneously in the areas where new tissue needs to be generated.



Instead of moving skin from other parts of the body or operating in prostheses of non-biological material, it is becoming more and more common for plastic surgeons to cultivate the patient’s own cells to make repairs. In burn injuries, for example, derma cells are cultivated from epithelium cells and then grow onto the surface of the wound.

But to go deeper, other methods are called for. The research team at Linköping University has studied various ways to cultivate the cell type needed in a matrix, a “scaffolding,” and then to apply it to the body. The best results were attained using porous spheres of micro format (a few hundredths of a millimeter in diameter) consisting of gelatin­-a substance that occurs naturally in the human body. (Images are available)


“These spheres offer multiple advantages. Enormous numbers of cells can be cultivated in the gelatin, and the material can also be injected in the patient,” says Fredrik Huss, a plastic surgeon in training who describes the method in his doctoral dissertation to be defended on September 2.

All types of cells attempted grew extremely well in the gelatin balls: skin cells, connecting tissue cells, cartilage cells, early stages of fat cells, and mammary gland cells. Experiments with transplanting in mice also yielded favorable results. Injection under the skin of spheres containing connecting tissue cells and fat cells led to good regeneration of tissue. But it is not even necessary to cultivate the cells in advance. Empty balls were injected into the upper arm of healthy volunteers. For comparison, saline solution and Resylane, a commonly used anti-wrinkle substance, were injected. The result was excellent regeneration of tissue inside the spheres, which were then degraded and disappeared, and there were no signs of rejection. On the other hand, Restylane injection produced no new generation of tissue.

“Our findings open up tremendous potential for the repair of soft body parts. It is a simpler and more dependable method than the fat transplants carried out today,” says Fredrik Huss, who, together with Elof Eriksson, is participating in an international research conference on tissue engineering TERM 2005, arranged by Linköping University. For the program, see http://www.liu.se/forskning/filer/program-term2.pdf.

Åke Hjelm | alfa
Further information:
http://www.liu.se

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

Magnesium magnificent for plasmonic applications

23.05.2018 | Materials Sciences

Tunable diamond string may hold key to quantum memory

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>