Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI used to map ’silent’ heart changes that ’remodel’ the heart

23.08.2005


Changes in heart mass and volume linked to early signs of left ventricle problems



Using magnetic resonance imaging technology, or MRI, to tag the work of millions of individual strands of heart muscle fibers, researchers at Johns Hopkins have successfully mapped the smallest deformations inside the beating hearts of 441 middle-aged and elderly men and women who have either silently developed heart disease or remained healthy. The novel use of the MRI allowed the researchers to create a gridlike, three-dimensional, computer image of each heart and track gradual deformations during each heartbeat.

The Hopkins findings, published in last week’s edition of the journal Circulation, are believed to be the first to tie specific "remodeling" changes in heart mass and volume to early and growing signs of trouble in any specific region of the muscle, specifically, the anterior wall (or front part) of the left ventricle, the heart’s main pumping chamber.


"Making new use of magnetic resonance imaging technology, we have been able to gather the first visual clues of how heart disease develops regionally and possibly spreads to different parts of the heart and cardiovascular system," says senior study investigator and cardiologist João Lima, M.D., associate professor of medicine and radiology at The Johns Hopkins University School of Medicine and its Heart Institute.

According to Lima, cardiologists are aware of many diseases that lead to deformations in the heart’s shape, both big and small, but this is the first experiment to have traced or mapped these changes in great detail. In problems such as enlarged hearts and hypertension, he says, "there are disproportionate increases in heart muscle mass to volume of blood being pumped."

The results of the Hopkins-led study of adults 45 to 85 are among the first to emerge from the Multiethnic Study of Atherosclerosis, called MESA for short, which is monitoring nearly 7,000 men and women of different ethnic backgrounds and with no existing signs of heart disease to determine who develops coronary artery disease and who does not.

All participants in the MESA study had cardiac MRIs performed at enrollment, but in this smaller group study, equal numbers of men and women were randomly assigned to have tagged-MRI analysis. To minimize any bias in interpretation of results, some scans was analyzed twice and by any one of three cardiologists.

For every scan, calculations were made for more than a dozen parameters of heart function, including thickness of various heart walls, pumping volume, ejection fraction (the percentage of blood pumped from the left ventricle during a heart beat), and shortening fraction (how much each muscle shortens during contraction), blood pressure (an indicator of the workload or stress on the heart), and body mass index. For logistical reasons, however, measures were only taken for regional mass in the left ventricle, the largest of the heart’s four chambers, limiting the study’s implications to this one particular chamber.

To calculate total changes in heart shape, which is three-dimensional, the researchers relied on a previous model that used MRI scans to calculate a ratio of muscle mass to volume of pumped blood. The greater the ratio, the greater the amount of concentric heart remodeling that has occurred.

When the researchers compared changes in heart shape to changes in heart function, statistical analysis showed that pumping function deteriorates as hearts increasingly change shape or remodel. Changes in heart shape often involved gains in mass and wall thickening.

The results confirmed for both men and women that changes in one particular region of the heart, the anterior wall of the left ventricle, were linked to the greatest declines in heart function.

In men with the greatest percentage of remodeling, for example, heart function also declined, as measured by shortening fraction (how much the muscle contracts during a heart beat). Study results showed men with a normal-sized heart, weighing 150 grams, with a remodeling ratio of 0.7 grams per milliliter, had a shortening fraction of 17.5 percent less. But, men with more remodeling and, for instance, a higher mass of 190 grams, had a remodeling ratio of 1.4 grams per milliliter and a shortening fraction of 15 percent less. This proves, the researchers say, that remodeled heart muscle was not able to contract as much as normal heart muscle.

The Hopkins researchers also found that particular patterns of remodeling and related heart function differ between men and women. In men, increased remodeling and decreased heart function appear to be gradual and steady over time. In women, initial results showed a temporary benefit to remodeling: Their heart function slightly improved during the heartbeat, before a steep decline in heart function ensued.

While the study was not comprehensive enough to offer conclusions as to why these gender difference occurred, the researchers speculate that it may be related to the fact that women develop cardiovascular disease later in life than do men, and that a women’s deteriorating heart function may also be delayed.

"Our results raise the possibility that early treatments for regional heart problems could eventually be used to prevent or suppress larger problems from developing, which could affect the entire cardiovascular system," says lead study author and cardiologist Boaz Rosen, M.D., a senior research fellow at Hopkins. "We have also shown that it is now possible to map changes of the heart in an early stage of their development, increasing the diagnostic and predictive applications of MRI as a key tool in combating cardiovascular disease."

While the researchers were not able to conclude that these early signs of heart deformation and regional dysfunction were the cause or trigger of congestive heart failure or other fatal heart conditions, they do believe that they have created the first pictures needed to make such predictions in the future.

"Because the MESA study follows participants for 10 years, this will be an ideal study to further investigate the health consequences of this remodeling process," says radiologist David Bluemke, M.D., Ph.D., an associate professor and director of MRI at Hopkins. Bluemke was a co-author of the study.

MRI is a noninvasive technique that produces high-quality images of structures and other internal organs inside the body. Unlike X-rays, MRI does not involve radiation, but instead uses large magnets and radio-frequency waves to produce "real-time," two- dimensional images. The specific MRI technique used in this study was developed at Hopkins by radiologist Elias Zerhouni, M.D., and further improved by radiology engineer Nael Osman, Ph.D. Because of the large size of an MRI machine, taking pictures requires that patients lie down on a platform that is moved within the magnets’ coils. The technology’s applications and image quality have grown steadily since MRI was introduced into medicine in the 1990s.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>