Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Type 2 Diabetes: Problems in the Furnace

16.08.2005


A detectable decline in energy production by mitochondria — the organelles that are the cell’s furnace for energy production — seems to be a key problem leading to insulin resistance, and thus to type 2 diabetes, according to studies by Howard Hughes Medical Institute researchers.



The research team said that insulin resistance — an impaired response to the presence of insulin — is detectable as early as 20 years before the symptoms of diabetes become evident. In fact, insulin resistance is now seen as the best predictor that type 2 diabetes will eventually develop, said the study’s senior author, Gerald I. Shulman, a Howard Hughes Medical Institute investigator at the Yale University School of Medicine.

In the new study examining how insulin interacts with the energy-producing mitochondria inside living cells, Shulman and his colleagues found that the rate of insulin-stimulated energy production by mitochondria is significantly reduced in the muscles of lean, healthy young adults who have already developed insulin resistance and who are at increased risk of developing diabetes later in life.


“This is further evidence that people who are prone to develop diabetes have signs of mitochondrial dysfunction,” Shulman said in an interview. This is important because mitochondria are the “energy factories” inside cells and produce most of the chemical power needed to sustain life.

The new research, which is published in the September 2005 issue of the open-access journal PLoS Medicine, indicates that a decreased ability to burn sugars and fats efficiently is an early and central part of the diabetes problem. Their new data also suggest the basic defect lies within the mitochondria, which exist in almost every cell.

The young adults studied by the research team are the offspring of parents who have type 2 diabetes, adding support to the idea that the risk can be inherited, and that the problem begins well before diabetes symptoms become evident. In an earlier research study published in the journal Science, Shulman and his colleagues had also found that healthy, lean older individuals have a major reduction in mitochondrial energy production that leads to accumulation of fat inside muscle cells resulting in insulin resistance. “These data may explain the increased prevalence of type 2 diabetes that occurs with aging” Shulman said.

In the new studies, Shulman and his Yale colleagues — Kitt Falk Petersen and Sylvie Dufour — discovered that the mitochondria in muscle cells respond poorly to insulin stimulation. Normal mitochondria react to insulin by boosting production of an energy-carrying molecule, ATP, by 90 percent. But the mitochondria from the insulin-resistant people they tested only boosted ATP production by 5 percent.

“These data demonstrate that insulin-stimulated rates of ATP synthesis are reduced in the insulin-resistant offspring of parents with Type 2 diabetes,” the researchers wrote in their report. Their work offers new insight into the early steps in the development of insulin resistance, and offers important clues to where the problem lies.

Among their findings was also evidence for a severe reduction in the amount of insulin stimulated phosphorus transport into the muscle cells of the insulin-resistant participants. This also points to a dramatic defect in insulin signaling and may explain the observed abnormalities in insulin-stimulated power production in the insulin-resistant study subjects, since phosphorus is a key element in the mitochondrion’s complex energy-production process, the oxidative-phosphorylation pathway.

“Type 2 diabetes affects about 171 million people worldwide, and the number of people likely to be affected by diabetes is expected to double by 2030,” Shulman and his colleagues added. “Type 2 Diabetes develops when resistance to insulin action is combined with impaired insulin secretion,” resulting in a severe oversupply of sugars and fats in the blood. “Studies have demonstrated the presence of insulin resistance in virtually all patients with type 2 diabetes,” Shulman added. Diabetes is the leading cause of blindness, end stage kidney disease and non-traumatic loss of limb, and has associated health care costs that exceed $130 billion a year in the United States.

Such fundamental research is important because the problem of diabetes is growing rapidly worldwide, and effective drugs are needed to halt or even reverse the disease process. Understanding how the cell’s internal energy system is controlled by the hormone, insulin, and how the mitochondria behave, may eventually lead to improved ways to overcome or prevent diabetes.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>