Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Offer New Approach For Testing Potential HIV Vaccines

20.07.2005


Emory University researchers have proposed a new design for HIV vaccine trials in animals that would more closely mimic how humans are exposed to the virus - potentially giving AIDS researchers a more effective tool in developing successful treatments to prevent HIV infection.



In the Emory study, the researchers, using computer simulations, developed an experimental design in which animals are repeatedly exposed to low doses of HIV (similar to how humans are exposed and infected). The belief that experiments involving realistically low challenge doses would require large numbers of animals has so far prevented the development of such trials, the researchers say.

Through computer simulations and statistical analysis of their virtual experiments, the Emory researchers showed that such trials would require far fewer animals than previously thought. Their research was published in the July 19 issue of the Public Library of Science Medicine.


"We demonstrate that using low doses and challenging repeatedly -- which also is more realistic because humans are typically exposed repeatedly to HIV -- represents a very promising design," says Roland Regoes, a postdoctoral researcher in Emory’s biology department and lead author of the study.

Trials in animal models have long played an essential role in evaluating the effectiveness of potential HIV vaccines and treatments. When assessing vaccine efficacy in animal models, the animals are first given the potential vaccination. They are then "challenged" (or infected) with the virus or pathogen against which the vaccine should give protection. In simian models of HIV infection, Simian Immunodeficiency Virus (SIV), closely related to HIV, is used to challenge macaques. The trials are usually conducted with very high challenge doses of the virus that result in certain infection.

"Developing a vaccine against HIV is one of the major goals of AIDS research," he says. "Our work suggests how to improve the animal models in which possible vaccines are assessed before they are tested clinically in humans. By using lower doses and challenging repeatedly, preclinical trials would be more similar to epidemiological phase III trials in humans. This allows us to optimize vaccines in preclinical trials with respect to what really matters epidemiologically."

Using a standard statistical power analysis, the researchers simulated low challenge dose experiments more than 100,000 times. The outcome of these virtual experiments was statistically analyzed in the same way a real experiment would be.

Infection with low doses has to-date not been performed very often, Regoes says, adding that a handful of research groups have already started trials using low-dose models.

"It will be interesting to study HIV infection following challenges with low virus doses, and I am certain we will be surprised in many ways by results of these studies. I believe that low-dose challenge experiments represent an interesting alternative for the preclinical assessment of vaccines," Regoes says. In addition to improving the design of preclinical trials, low challenge dose experiments may also allow AIDS researchers to investigate "immunological correlates of protection," such as how many antibodies or T cells are needed to prevent infection, he says.

Regoes conducted the study with Ira Longini of Emory’s Rollins School of Public Health, Silvija Staprans of the Emory School of Medicine and the Emory Vaccine Center, and Mark Feinberg, a researcher with Merck. They made several recommendations in the PLoS paper on how to design preclinical studies with low doses. Some of these suggestions are related to specific aspects of conducting such trials, such as how much and how often subjects should be exposed to HIV. Other recommendations aim to make preclinical trials more realistic in other important ways, such as the route of infection or the HIV strain to use.

Regoes may be contacted directly at rregoes@emory.edu.

Beverly Cox Clark | EurekAlert!
Further information:
http://www.plosjournals.org
http://www.emory.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>