Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Offer New Approach For Testing Potential HIV Vaccines

20.07.2005


Emory University researchers have proposed a new design for HIV vaccine trials in animals that would more closely mimic how humans are exposed to the virus - potentially giving AIDS researchers a more effective tool in developing successful treatments to prevent HIV infection.



In the Emory study, the researchers, using computer simulations, developed an experimental design in which animals are repeatedly exposed to low doses of HIV (similar to how humans are exposed and infected). The belief that experiments involving realistically low challenge doses would require large numbers of animals has so far prevented the development of such trials, the researchers say.

Through computer simulations and statistical analysis of their virtual experiments, the Emory researchers showed that such trials would require far fewer animals than previously thought. Their research was published in the July 19 issue of the Public Library of Science Medicine.


"We demonstrate that using low doses and challenging repeatedly -- which also is more realistic because humans are typically exposed repeatedly to HIV -- represents a very promising design," says Roland Regoes, a postdoctoral researcher in Emory’s biology department and lead author of the study.

Trials in animal models have long played an essential role in evaluating the effectiveness of potential HIV vaccines and treatments. When assessing vaccine efficacy in animal models, the animals are first given the potential vaccination. They are then "challenged" (or infected) with the virus or pathogen against which the vaccine should give protection. In simian models of HIV infection, Simian Immunodeficiency Virus (SIV), closely related to HIV, is used to challenge macaques. The trials are usually conducted with very high challenge doses of the virus that result in certain infection.

"Developing a vaccine against HIV is one of the major goals of AIDS research," he says. "Our work suggests how to improve the animal models in which possible vaccines are assessed before they are tested clinically in humans. By using lower doses and challenging repeatedly, preclinical trials would be more similar to epidemiological phase III trials in humans. This allows us to optimize vaccines in preclinical trials with respect to what really matters epidemiologically."

Using a standard statistical power analysis, the researchers simulated low challenge dose experiments more than 100,000 times. The outcome of these virtual experiments was statistically analyzed in the same way a real experiment would be.

Infection with low doses has to-date not been performed very often, Regoes says, adding that a handful of research groups have already started trials using low-dose models.

"It will be interesting to study HIV infection following challenges with low virus doses, and I am certain we will be surprised in many ways by results of these studies. I believe that low-dose challenge experiments represent an interesting alternative for the preclinical assessment of vaccines," Regoes says. In addition to improving the design of preclinical trials, low challenge dose experiments may also allow AIDS researchers to investigate "immunological correlates of protection," such as how many antibodies or T cells are needed to prevent infection, he says.

Regoes conducted the study with Ira Longini of Emory’s Rollins School of Public Health, Silvija Staprans of the Emory School of Medicine and the Emory Vaccine Center, and Mark Feinberg, a researcher with Merck. They made several recommendations in the PLoS paper on how to design preclinical studies with low doses. Some of these suggestions are related to specific aspects of conducting such trials, such as how much and how often subjects should be exposed to HIV. Other recommendations aim to make preclinical trials more realistic in other important ways, such as the route of infection or the HIV strain to use.

Regoes may be contacted directly at rregoes@emory.edu.

Beverly Cox Clark | EurekAlert!
Further information:
http://www.plosjournals.org
http://www.emory.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>