Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New medical ultrasound technology rides wave of the future

12.05.2005


A fully digital 4D ultrasound system is set to provide a ‘next generation’ integrated solution for medical imaging applications, allowing practitioners to provide faster treatment and improve therapeutic success rates.



Developed by ADUMS, an IST-funded project that ended in April 2005, the advanced high-quality imaging system will significantly reduce diagnostic time. In addition, the technology uses off-the-shelf computer hardware, making it a much cheaper alternative to expensive, purpose-produced ultrasound machines.

“The whole process of ultrasound devices has been moved away from the traditional hardware and is now implemented in software,” says Dr Georgios Sakas, ADUMS project coordinator. “The hardware of the device creates mechanical waves and receives the echoes. Once the echoes are received, they are converted in digital form and the rest of the processing is performed by software.”


A 4D ultrasound takes multiple images in rapid succession, creating a three-dimensional motion video, which is invaluable for diagnosis purposes.

An important factor in ultrasound image processing is the beamformer, the part of the system that provides the focusing for the ultrasound beam. Dr Stergios Stergiopoulos, president of the Canadian National Medical Technologies, one of the project partners, maintains that even today’s most advanced state-of- the-art medical ultrasound imaging systems suffer from very poor image resolution.

“This is the result of the very small size of deployed arrays of sensors and the distortion effects by the influence of the human body’s non-linear propagation characteristics,” he says. “The ADUMS project technology replaces the beamformer of the ultrasound systems with the adaptive beamforming scheme that has been developed for the sonar array systems of the Canadian Navy. The ADUMS project results demonstrated that the new adaptive beamformer significantly improves, at very low cost, the image resolution capabilities of the ultrasound imaging systems, which will result in better diagnosis.”

Until now, every new generation of the hardware component of ultrasound devices was, effectively, a complete redesign.

“On the other hand, ADUMS technology is based on a complete software approach, using off-the-shelf PC components,” explains Dr Sakas. “Thus, a redesign from scratch will not be necessary and future improvements can be made by extensions of existing software.”

The portability and the low cost of the 4D ultrasound systems allow medical practitioners and family physicians to have ready access to diagnostic imaging systems on a daily basis and will make a valuable contribution in the field of preventive medicine, adds Dr Stergiopoulos.

Consortium partners are currently using the new technology for their businesses and are promoting it to other organisations that use ultrasound technology.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>