Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Breast CT reaches clinical testing: May improve on mammography


Technology developed at UC Davis may be gentler, more accurate than mammography

A new breast screening technology that may be able to detect tumors earlier than mammography -- without the need for uncomfortable breast compression -- is being tested in patients at the University of California, Davis, Medical Center. Developed at UC Davis, the machine is the first breast CT to reach clinical testing in a generation. An early prototype was tested in the 1970s, but abandoned as impractical.

"We think this technology may allow radiologists to routinely detect breast tumors at about the size of a small pea," said John M. Boone, professor of radiology and biomedical engineering at UC Davis and the machine’s developer. "In contrast, mammography detects tumors that are about the size of a garbanzo bean. Tumor size at detection is one of the most important factors in determining breast cancer prognosis, so if we can detect smaller cancers and do so routinely, survival from this disease will improve."

Unlike mammography, in which the breast is squeezed between two plates, the breast CT machine requires no breast compression.The patient lies face down on a padded table. The table has a circular opening in it, through which the patient places one breast at a time.

A CT machine under the table scans each breast. The screening takes about 17 seconds per breast. "There was no discomfort," said Lydia Howell, a professor of pathology at UC Davis and a volunteer in preliminary clinical testing of the breast scanner. "But the more important advance will be if breast CT does detect tumors earlier than mammography. The earlier and smaller a cancer is when it is detected, the less the chance that it has spread to the lymph nodes, lungs or bones, and the greater the chance for a permanent cure and for breast preservation."

A mammogram is an X-ray taken through all the layers of the breast at once. The resulting image may not detect a tumor hidden by other structures within the breast. This is more likely to happen in the case of young women with dense breasts or in women with breast implants.

The breast CT scanner takes images of virtual "slices" of the breast -- about 300 images per breast. Computers then assemble these images into highly detailed, three-dimensional pictures that provide a more unobstructed view of breast tissues than can be seen on mammography. "It’s the difference between taking a picture of a crowd from across the street, versus circling the crowd and shooting hundreds of separate photos along the way, each photo only two or three people deep. Your chances of finding a particular person in the crowd are going to be a lot better with more photos," Boone said.

Boone and his colleagues are testing the new technology in a clinical trial that will enroll about 190 patients. The trial is open only to UC Davis patients with recent mammograms that are suspicious for breast cancer.

Women who agree to participate in this trial have the breast CT examination followed by a needle biopsy of the suspicious tissue.

If the trial confirms that breast CT detects tumors as well as mammography, as investigators expect, the next step will be a larger trial to determine whether the new technology can indeed detect tumors earlier than mammography. Boone believes that a more extensive trial could be under way within two to three years.

Boone developed the machine in collaboration with UC Davis radiology professors Karen K. Lindfors and J. Anthony Seibert, and UC San Diego radiology professor Thomas R. Nelson. The breast CT project was funded by $6 million in grants from the California Breast Cancer Research Program, the National Cancer Institute and the National Institute for Biomedical Imaging and Bioengineering.

"Of course, we are going to let the science dictate where we go with this," Boone said, "but if all goes well, breast CT may be the breast cancer screening technology of the future."

Boone, a medical physicist who holds six scientific patents, has served as a consultant to the National Institutes of Health, the U.S. Food and Drug Administration and the U.S. Army Breast Cancer Research Program. He is vice chair for research in the UC Davis Department of Radiology and co-leader of the UC Davis Cancer Center Biomedical Technology Program.

Computed tomography, sometimes called "CAT scanning," is used every day to scan brains, lungs, abdomens and pelvises. But imaging experts long ago dismissed CT as impractical for breast cancer screening, assuming it would require too much radiation.

Boone and his colleagues decided to revisit the issue, recognizing that radiation-dose estimates for breast CT were based on use of standard CT machines, which would require the breast and entire chest to be scanned together. When Boone recalculated radiation doses based on scanning the breast alone, he found that CT imaging would use no more radiation than mammography.

Scientists at the University of Rochester, the University of Massachusetts, and Duke University are also developing breast CT scanners, but Boone’s is the first to have reached clinical testing. "A number of talented scientists around the country are working on the development of this new tool, and this friendly competition keeps us all working that much harder to produce results," Boone said.

For now, women should continue to get mammograms as recommended by their physicians. "Although the breast CT images are interesting, mammography is the currently accepted gold standard for breast cancer screening, and women should continue to get their annual mammograms," radiologist Lindfors emphasized.

"Even if our best hopes are realized, breast CT will not be commercially available for at least five years, and probably longer. Don’t put off getting mammograms, because it will take some time to develop this newer technology," she said.

Claudia Morain | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>