Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fat is needed to clear old fat from the system

11.05.2005


Where fat comes from determines whether the body can metabolize it effectively. Researchers at Washington University School of Medicine in St. Louis have found that the "old" fat stored in the body’s peripheral tissues -- that is, around the belly, thighs or bottom -- can’t be burned efficiently unless "new" fat is eaten in the diet or made in the liver.



The research team developed genetically engineered mice missing an important fat synthesizing enzyme in the liver. As a result, the mice, called FASKOL mice (Fatty Acid Synthase KnockOut in Liver), could not produce new fatty acids in the liver. Because liver fatty acids are vital for maintaining normal sugar, fat and cholesterol metabolism, these mice must take in dietary fat to remain healthy.

Reporting in the May issue of the journal Cell Metabolism, the researchers say these mice developed fatty liver disease when placed on a zero fat diet. "When we took dietary fat away from the FASKOL mice, their livers quickly filled with fat," says senior investigator Clay F. Semenkovich, M.D., professor of medicine and of cell biology and physiology. "Their ’old’ fat stores mobilized to the liver, but their livers could not initiate fat burning, and the fat just accumulated. We concluded that to regulate fat burning, the liver needs ’new’ fat."


New fat is the fat that is consumed in food or is newly made in the liver as glucose is converted to fat by fatty acid synthase, the enzyme missing in the FASKOL mice. When the system takes in high amounts of glucose, fatty acid synthase in the liver makes it into new fat.

In addition to fatty livers, the transgenic mice developed low blood sugar levels on the zero fat diet. Both symptoms were reversed with dietary fat, and in fact on a normal diet, the transgenic mice were no different than normal mice in terms of body weight, body fat, metabolic rate and food intake.

The effect of added dietary fat was duplicated when the mice were treated with a drug that activates a protein called PPAR-alpha. Liver fat declined to normal in the FASKOL mice within 10 days of receiving the PPAR-alpha activating drug.

PPAR-alpha is a protein found in all mammals and is central to metabolic processes that extract energy from dietary components like carbohydrates and fats. Because the PPAR-alpha activating drug did the same work that dietary fat does, the investigators concluded that new fat may be crucial to initiating the PPAR-alpha pathway. "Scientists have argued that PPAR-alpha is activated by fats," says Semenkovich, who also directs the Division of Endocrinology, Metabolism and Lipid Research and is a staff physician at Barnes-Jewish Hospital. "But we’ve never known which fats or where they come from. This study suggests that new fat is a ’key’ that unlocks the ’door’ for PPAR-alpha in the liver."

The liver is very important for processing nutrients consumed in the diet and sending them on to the rest of the body. Abnormal processing of glucose or lipids in the liver contributes to problems of type 2 diabetes and atherosclerosis, and fatty liver disease often is seen in people who are obese or suffer from insulin resistance.

"There’s also good evidence that the liver plays a key role in mediating cardiovascular risk through the secretion of multiple proteins associated with inflammation," Semenkovich says. "In these mice we found that when too much fat got into the liver, there was excessive inflammation."

With Manu Chakravarthy, M.D., Ph.D., an endocrinology fellow and first author of the paper, Semenkovich found that new fat seems to solve those problems.

The research team is now trying to identify fats that could be given in small amounts to activate the PPAR-alpha pathway. They also are studying liver cells and fat cells to see how the liver can tell the difference between old fat and new fat.

Eventually, Semenkovich believes these findings could lead to more effective strategies for the treatment of obesity, type 2 diabetes and other metabolic problems. For now, he says that dieters who want to lose fat stored in peripheral tissues may find it useful to take in small amounts of dietary fats, such as fish oils, that might more effectively activate PPAR-alpha and fat burning pathways through the liver.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu
http://www.cellmetabolism.org

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>