Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatal brain disease holds clues to dementia

28.04.2005


Scientists at Melbourne’s Howard Florey Institute have uncovered a clue about the causes of dementia in Huntington’s disease, one of the disease’s symptoms, by showing that mice susceptible to Huntington’s disease have problems with learning and memory before the diseases’ typical movement problems appear.



The Florey scientists also discovered that in Huntington’s diseased brains, information processing between neurons is disrupted, but the neurons do not die, which means the brain may respond to new anti-dementia drugs that can restore memory.

Huntington’s disease is an incurable, inherited disorder of the nervous system that affects specific brain regions and inevitably leads to death. Symptoms range from disrupted control of movements and thought processes, and emotional problems. These include: jerky arm or leg movements; difficulties with speech, swallowing, concentration, memory and learning; and depression and personality changes.


Huntington’s disease is caused by a mutation in a single gene. When this defective gene is passed from parent to child, 50 percent of the offspring will inherit the disorder, which can be detected by genetic testing.

Research leader Dr Anthony Hannan said his team’s investigations were significant as they could lead to the development of memory restoring drugs designed especially for people with Huntington’s disease.

"We have demonstrated the linkage from molecule to cell to learning and memory, and can relate this to a particular area of the brain," Dr Hannan said.

"Our work shows that the defective huntingtin gene disrupts how large groups of neurons ’talk’ to one another and adjust their wiring in response to stimulation from the environment."

"Now we can better understand how a genetic change affects wiring of neurons and relate that to changes in learning, memory and behaviour in Huntington’s disease."

"By better understanding the disease mechanism, we can work towards developing drugs to treat dementia in people with Huntington’s disease," he added.

Dr Hannan’s team trained normal and Huntington’s disease-susceptible mice to perform a complex touch-dependent learning task. The healthy mice could improve on their performance and learn the task, but the mice with Huntington’s disease could not, proving they had learning and memory problems.

In a second study, both mouse groups had most of their whiskers trimmed on one side. After the intact whiskers were stimulated, the touch and sensation brain region increased in area in the normal mice, but not the Huntington’s disease mice. This showed that the Huntington’s diseased brain had lost its ability to change wiring patterns and suggests that the neurons were unable to reorganise themselves and strengthen their nerve connections. Humans with Huntington’s disease also have problems with touch perception.

While more research is needed, Dr Hannan noted that Alzheimer’s disease patients may also have defective nerve connections in the brain similar to Huntington’s disease. If this is true, it might be possible to develop anti-dementia drugs that enhance information processing for both disorders.

Dr Anthony Hannan and his team collaborated with researchers from Oxford University and Nencki Institute of Experimental Biology in Poland on the project. Their findings were reported in the March 23 edition of The Journal of Neuroscience.

The Howard Florey Institute is Australia’s leading brain research centre. Its scientists undertake clinical and applied research that can be developed into treatments to combat brain disorders, and into new medical practices. Their discoveries will improve the lives of those directly, and indirectly, affected by brain and mind disorders in Australia, and around the world. The Florey’s research areas cover a variety of brain and mind disorders including Parkinson’s disease, stroke, motor neuron disease, addiction, epilepsy, multiple sclerosis, muscular dystrophy, autism and dementia.

Merrin Rafferty | EurekAlert!
Further information:
http://www.hfi.unimelb.edu.au

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>