Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Liverpool scientists uncover how E.coli became lethal


A University of Liverpool scientist has discovered how the food poisoning bug E.Coli 0157 became deadly to humans.

Twenty-three years ago a harmless gut bacterium called E. coli developed the ability to kill people through food poisoning, bloody diarrhoea and kidney failure. Normally E. coli bacteria live in the intestine and don’t pose any danger, but some varieties can cause fatal food poisoning. The most serious in the UK is E. coli O157, which is carried by livestock (mainly cattle), and can enter the human food chain through contaminated meat and inadequate food processing.

Dr Heather Allison, from the University’s School of Biological Sciences, explains: "Sometime before 1982 an unknown virus that attacks bacteria passed on a part of genetic coding to E. coli that allows some strains to make Shiga toxin. This lethal poison causes the notorious food-borne infection that results in bloody diarrhoea and sometimes kidney failure in people."

The team has now discovered how the virus can infect E. coli, by recognising a newly identified but common receptor on the surface of E. coli cells, which allows the viruses to gain entry into the bacteria. Once inside, the virus gives new genetic material to the bacterium, providing it with the ability to produce Shiga toxin.

In order to reduce the likelihood of picking up the E. Coli bug, Dr Allison suggests avoiding undercooked minced beef; foodstuffs in general that have come into contact with livestock faeces and have not been cooked or properly washed; untreated water contaminated with livestock faeces; and cooked foodstuffs that have come into contact with contaminated, uncooked meat products.

Samantha Martin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>