Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings about protection against pneumococcal disease

31.03.2005


Findings hoped to spur the development of an improved vaccine



Since 2000, U.S. infants have been routinely immunized against pneumococcal (Streptococcus pneumoniae) infection. Now, Boston researchers have made a surprising discovery about natural immunity to pneumococcus. Two related studies, led by Dr. Richard Malley of the Children’s Hospital Boston Division of Infectious Diseases and Dr. Marc Lipsitch of the Harvard School of Public Health, suggest that natural protection from pneumococcal disease may derive from some previously unrecognized immune mechanism, which could possibly be exploited for a new vaccine. The latest study appears in the current (March 29) issue of the Proceedings of the National Academy of Sciences.

In the U.S., before the advent of the pneumococcal conjugate vaccine, known as Prevnar, S. pneumoniae caused more than 7 million ear infections each year, half a million episodes of bacterial pneumonia, and life-threatening cases of meningitis and bacteremia. Prevnar is made up of material from the outer capsule of each of the seven pneumococcal strains most common in the U.S. This material triggers recipients’ immune systems to produce so-called anticapsular antibodies specific to those strains. However, Prevnar doesn’t work against many pneumococcal strains in the developing world, where pneumococcus kills nearly 1 million children annually, and it is expensive and difficult to manufacture, leading to chronic shortages. Moreover, in several studies, use of pneumococcal conjugate vaccines caused non-vaccine strains to become more common, raising concerns that Prevnar could eventually become ineffective even in the U.S. Of 90 known pneumococcal strains, Prevnar only covers seven.


Lipsitch and Malley first conducted epidemiologic studies in unvaccinated toddlers in the U.S., Israel, and Finland. As they reported in January in the online journal PLoS Medicine, the incidence of invasive disease from almost all pneumococcal strains fell by nearly half between 1 and 2 years of age. Yet, anti-capsular antibody concentrations increased only slightly, suggesting that a mechanism other than antibody to the pathogen’s outer capsule may be conferring natural protection against pneumococcal disease.

What then might provide this protection? Looking at the first step of pneumococcal disease, colonization of the nose and throat, Malley and Lipsitch were able to elicit long-lasting immunity to pneumococcus in mice independently of any antibodies. In the current (March 29) Proceedings of the National Academy of Science, they report that when mice were exposed to live pneumococci, or to a whole-cell vaccine developed in Malley’s lab, they were highly immune to pneumococcal colonization -- even if they were genetically unable to make antibodies. Moreover, mice exposed to a single pneumococcal strain became immune not just to that strain, but to others. The immunity appeared to arise from an effect on the immune system’s CD4+ T-cells, since mice that lacked these cells did not develop immunity.

"Textbooks say that naturally-acquired protection against pneumococcal disease depends on the development of antibody against the capsule of the bacterium," says Malley, who is also an assistant professor in pediatrics at Harvard Medical School. "We were surprised to find that protection was independent of not only antibody to the capsule, but also antibody of any specificity."

Overall, their findings suggest that while antibodies are sufficient for protection against pneumococcal disease, they may not represent the natural mechanism of protection.

"An interesting observation is that HIV-infected children, whose CD4+ cells are depleted by the virus, are at about a 200-fold higher risk for pneumococcal disease," Malley adds. "Our experiments in mice may provide an explanation for that vulnerability."

The whole-cell vaccine developed by Malley’s lab could potentially protect against all pneumococcal strains, Malley says. The vaccine, made of killed pneumococcal cells, was shown to prevent colonization and invasive disease when given to animals in the form of nose drops. Malley believes the vaccine stimulates CD4+ T-cells to identify components of pneumococcus that are identical in every strain and to provide protection at the earliest stage of infection, when pneumococcus is colonizing the nasal passages.

The whole-cell vaccine, or a derivative of it, would be a boon for the developing world, because it is inexpensive, covers all pneumococcal strains, and does not require refrigeration. Malley and colleagues are now working to define precisely how the whole-cell vaccine works immunologically, and determine what parts of the killed bacterium provide the actual protection. The ultimate goal is to test the vaccine in adult volunteers, and eventually in children.

Susan Craig | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>