Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings about protection against pneumococcal disease

31.03.2005


Findings hoped to spur the development of an improved vaccine



Since 2000, U.S. infants have been routinely immunized against pneumococcal (Streptococcus pneumoniae) infection. Now, Boston researchers have made a surprising discovery about natural immunity to pneumococcus. Two related studies, led by Dr. Richard Malley of the Children’s Hospital Boston Division of Infectious Diseases and Dr. Marc Lipsitch of the Harvard School of Public Health, suggest that natural protection from pneumococcal disease may derive from some previously unrecognized immune mechanism, which could possibly be exploited for a new vaccine. The latest study appears in the current (March 29) issue of the Proceedings of the National Academy of Sciences.

In the U.S., before the advent of the pneumococcal conjugate vaccine, known as Prevnar, S. pneumoniae caused more than 7 million ear infections each year, half a million episodes of bacterial pneumonia, and life-threatening cases of meningitis and bacteremia. Prevnar is made up of material from the outer capsule of each of the seven pneumococcal strains most common in the U.S. This material triggers recipients’ immune systems to produce so-called anticapsular antibodies specific to those strains. However, Prevnar doesn’t work against many pneumococcal strains in the developing world, where pneumococcus kills nearly 1 million children annually, and it is expensive and difficult to manufacture, leading to chronic shortages. Moreover, in several studies, use of pneumococcal conjugate vaccines caused non-vaccine strains to become more common, raising concerns that Prevnar could eventually become ineffective even in the U.S. Of 90 known pneumococcal strains, Prevnar only covers seven.


Lipsitch and Malley first conducted epidemiologic studies in unvaccinated toddlers in the U.S., Israel, and Finland. As they reported in January in the online journal PLoS Medicine, the incidence of invasive disease from almost all pneumococcal strains fell by nearly half between 1 and 2 years of age. Yet, anti-capsular antibody concentrations increased only slightly, suggesting that a mechanism other than antibody to the pathogen’s outer capsule may be conferring natural protection against pneumococcal disease.

What then might provide this protection? Looking at the first step of pneumococcal disease, colonization of the nose and throat, Malley and Lipsitch were able to elicit long-lasting immunity to pneumococcus in mice independently of any antibodies. In the current (March 29) Proceedings of the National Academy of Science, they report that when mice were exposed to live pneumococci, or to a whole-cell vaccine developed in Malley’s lab, they were highly immune to pneumococcal colonization -- even if they were genetically unable to make antibodies. Moreover, mice exposed to a single pneumococcal strain became immune not just to that strain, but to others. The immunity appeared to arise from an effect on the immune system’s CD4+ T-cells, since mice that lacked these cells did not develop immunity.

"Textbooks say that naturally-acquired protection against pneumococcal disease depends on the development of antibody against the capsule of the bacterium," says Malley, who is also an assistant professor in pediatrics at Harvard Medical School. "We were surprised to find that protection was independent of not only antibody to the capsule, but also antibody of any specificity."

Overall, their findings suggest that while antibodies are sufficient for protection against pneumococcal disease, they may not represent the natural mechanism of protection.

"An interesting observation is that HIV-infected children, whose CD4+ cells are depleted by the virus, are at about a 200-fold higher risk for pneumococcal disease," Malley adds. "Our experiments in mice may provide an explanation for that vulnerability."

The whole-cell vaccine developed by Malley’s lab could potentially protect against all pneumococcal strains, Malley says. The vaccine, made of killed pneumococcal cells, was shown to prevent colonization and invasive disease when given to animals in the form of nose drops. Malley believes the vaccine stimulates CD4+ T-cells to identify components of pneumococcus that are identical in every strain and to provide protection at the earliest stage of infection, when pneumococcus is colonizing the nasal passages.

The whole-cell vaccine, or a derivative of it, would be a boon for the developing world, because it is inexpensive, covers all pneumococcal strains, and does not require refrigeration. Malley and colleagues are now working to define precisely how the whole-cell vaccine works immunologically, and determine what parts of the killed bacterium provide the actual protection. The ultimate goal is to test the vaccine in adult volunteers, and eventually in children.

Susan Craig | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>