Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Optical technique identifies vulnerable plaques in cardiac patients


Imaging technology may someday guide therapy designed to prevent heart attacks

A catheter-based imaging technology called optical coherence tomography (OCT) can successfully identify the characteristics of coronary plaques in patients with various cardiac symptoms. The report from researchers at Massachusetts General Hospital (MGH) will appear in the journal Circulation and has received early online release at

"More than 1.2 million people die from coronary artery disease every year, a quarter of them before or soon after arriving at the hospital," says Ik-Kyung Jang, MD, PhD, director of cardiovascular clinical research in the MGH Cardiology Division and lead author of the current study. "The ability to identify dangerous plaques before they rupture and produce a heart attack or sudden cardiac death will be crucial to innovative preventive therapies."

Plaques are deposits of fats, cholesterol and other materials that collect in major arteries, restricting or sometimes blocking blood flow. While some plaques are relatively stable, others are vulnerable to rupture and release their contents into the bloodstream, causing a blood clot to form. Heart attacks and other acute coronary events usually result from the rupture of high-risk, vulnerable plaques in coronary arteries, and the characteristics of those plaques have been determined primarily by autopsy studies.

OCT uses infrared light delivered via fiberoptic catheter to produce high-resolution, cross-sectional images of blood vessels. Study co-authors Guillermo Tearney, MD, PhD, of the MGH Pathology Department and the Wellman Center for Photomedicine at MGH, and Brett Bouma, PhD, also of the Wellman Center, developed the use of OCT to visualize coronary arteries, including vulnerable plaques. The technology developed in their laboratory was used for this first study to examine the structure of plaques in patients with cardiac disease.

The study enrolled patients scheduled to undergo cardiac catheterization for whom angiograms or other imaging techniques had identified the arterial lesion responsible for their symptoms. Participants either had experienced a recent heart attack or had acute coronary syndrome (ACS), a set of symptoms associated with reduced blood supply to the heart muscle. A third group had stable angina, chest pain that occurs with physical or mental stress, which is not usually related to plaque rupture. Clear OCT images of the suspicious lesions were obtained for 20 heart attack patients, 20 with ACS and 17 with stable angina.

Vulnerable plaques are believed to have three major characteristics – a deposit of lipids (fats), a thin cap of fibrous material covering the lipid pool, and infiltration of the immune cells called macrophages. The OCT images showed that the heart attack and ACS patients had more lipid in their plaques and significantly thinner fibrous caps than did the stable angina patients. Overall, vulnerable plaques were identified in 72 percent of the heart attack patients, 50 percent of those with ACS and only 20 percent of stable angina patients.

"This is the first technique that allows us to study the structural changes underlying vulnerable plaques in living patients, and it supports the conclusions of previously reported postmortem studies," says Jang. "We still need to gather more data to confirm these characteristics, and our group will carry out further studies of how plaques develop and rupture. Someday OCT may provide information that will guide treatments to prevent plaque rupture and its disastrous consequences." Jang is an associate professor of Medicine at Harvard Medical School.

Along with the study’s senior author Bouma and Tearney, additional co-authors are Briain MacNeill, MD, Masamichi Takano, MD, and Fabian Moselewski, of the MGH Cardiology Division; Nicusor Iftima, PhD, and Milen Shishkov, PhD, of the Wellman Center; Stuart Houser, MD, and Thomas Aretz, MD, MGH Department of Pathology; and Elkan Halpern, MGH Department of Radiology. The study was supported by grants from the Center for Integration of Medicine and Innovative Technology, for development of the imaging system platform; the National Institutes of Health and Guidant Corporation.

Sue McGreevey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>