Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast finding links processes in heart disease and cancer

29.03.2005


By studying a little-known yeast too primitive to get diseases, Johns Hopkins researchers have uncovered a surprising link between two processes at play in heart disease and cancer in people.



In experiments with yeast known as S. pombe, the researchers discovered that a gene that helps the organism make cholesterol also helps it survive when oxygen is scarce. The finding, described in the March 25 issue of Cell, offers a new strategy for killing infectious yeast, but it also suggests that cells’ efforts to make cholesterol and detect oxygen levels might be connected in people, too.

"We were simply trying to establish that this yeast could be a model for studying cholesterol-related activities in human cells," says the study’s leader, Peter Espenshade, Ph.D., assistant professor of cell biology in Johns Hopkins’ Institute for Basic Biomedical Sciences. "We certainly didn’t expect to find a completely new role for this gene."


It’s already well established that human cells can both make cholesterol and sense oxygen. In people, high levels of cholesterol in the blood are a major risk factor for heart disease, and many human cancer cells are able to survive despite being in tumors’ oxygen-starved centers. "We don’t know yet whether cholesterol production and oxygen sensing are connected in human cells, but now we’re trying to find out," says Espenshade.

In people, the gene in question, known as SREBP, controls other genes whose products help make or import cholesterol. Cholesterol-lowering drugs called statins mimic this gene’s natural role by triggering cells to import more cholesterol, clearing the artery-clogging stuff from the blood.

Despite the obvious medical relevance of SREBP, no one had ever looked at the equivalent system -- or even determined whether there was one -- in yeast, the simple, single-celled relatives with which we share many genes. Because yeast can be easily manipulated and studied, Espenshade figured they might be a good model for figuring out exactly how SREBP is turned on, what it does and how it’s shut off -- if the organism has an equivalent process.

Turning first to databases of the entire genetic sequences of various yeast, Espenshade sought yeast genes that looked like SREBP and its binding partner SCAP. Nothing turned up in the well-studied S. cerevisiae, or brewer’s yeast, but S. pombe seemed to have the right stuff.

Graduate student Adam Hughes then examined the role of these similar genes to prove that they in fact duplicate the human process. Indeed, the yeast gene they called sre1 triggered activation of cholesterol-producing genes, aided by a gene called scp1 that behaves like SCAP.

As in humans, sre1 somehow gets turned on when cholesterol levels are low, increasing the cell’s production of cholesterol. As cholesterol builds up in the cell, sre1 is gradually turned off. "Essentially, SREBP and sre1 both try to maintain an optimal level of cholesterol in the cells," says Espenshade.

But, based on what he now knows, Espenshade suspects that the yeast use cholesterol levels to figure out whether there’s enough oxygen around for biology as usual. Single-celled yeast can alter their biology to live without oxygen, and human cells can do so to a certain extent. Johns Hopkins researcher Gregg Semenza, M.D., Ph.D., discovered a number of years ago how human cells react to low oxygen levels, but that process has never been connected to cholesterol production.

"Our cells can adjust to lowered oxygen by turning on a specific set of genes when oxygen levels drop [using a gene called HIF1-alpha]," says Espenshade. "While there’s no known connection between this process and cholesterol production, our results in the yeast suggest that perhaps SREBP itself, or something in the cholesterol pathway, might also serve as an oxygen sensor for mammalian cells."

It makes sense, he says, that the yeast could use its cholesterol levels as an indirect measure of oxygen levels. The cell uses a few oxygen molecules each time it makes cholesterol, so lowered cholesterol levels could signal that there’s not enough oxygen around to make it. And because low cholesterol levels automatically turn on the yeast’s version of SREBP, it’s an easy solution to have the same gene sound the alarm that the cell needs to adapt to low levels of oxygen.

Espenshade says sre1’s role in the yeast’s production of cholesterol (actually a similar molecule called ergosterol) and sensing of oxygen might offer a new opportunity to kill infectious yeast and fungi that share the gene with S. pombe. "Without the sre1 gene, the yeast in our experiments died in low oxygen conditions," says Espenshade. "Because low oxygen levels are common in infected tissues, if we can block infectious yeasts’ SREBP pathway without affecting human cells’ cholesterol pathways, we might be able to treat certain infections."

Espenshade and his team have found that infection-causing yeast Aspergillus, Neurospora, Cryptococcus and Ustilago share S. pombe’s cholesterol-related genes, while S. cerevisae and the yeast Candida do not.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.cell.com

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>