Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain imaging studies investigate pain reduction by hypnosis

16.03.2005


Although hypnosis has been shown to reduce pain perception, it is not clear how the technique works. Identifying a sound, scientific explanation for hypnosis’ effect might increase acceptance and use of this safe pain-reduction option in clinical settings.



Researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine and the Technical University of Aachen, Germany, used functional magnetic resonance imaging (fMRI) to find out if hypnosis alters brain activity in a way that might explain pain reduction. The results are reported in the November-December 2004 issue of Regional Anesthesia and Pain Medicine.

The researchers found that volunteers under hypnosis experienced significant pain reduction in response to painful heat. They also had a distinctly different pattern of brain activity compared to when they were not hypnotized and experienced the painful heat. The changes in brain activity suggest that hypnosis somehow blocks the pain signal from getting to the parts of the brain that perceive pain.


"The major finding from our study, which used fMRI for the first time to investigate brain activity under hypnosis for pain suppression, is that we see reduced activity in areas of the pain network and increased activity in other areas of the brain under hypnosis," said Sebastian Schulz-Stubner, M.D., Ph.D., UI assistant professor (clinical) of anesthesia and first author of the study. "The increased activity might be specific for hypnosis or might be non-specific, but it definitely does something to reduce the pain signal input into the cortical structure."

The pain network functions like a relay system with an input pain signal from a peripheral nerve going to the spinal cord where the information is processed and passed on to the brain stem. From there the signal goes to the mid-brain region and finally into the cortical brain region that deals with conscious perception of external stimuli like pain.

Processing of the pain signal through the lower parts of the pain network looked the same in the brain images for both hypnotized and non-hypnotized trials, but activity in the top level of the network, which would be responsible for "feeling" the pain, was reduced under hypnosis.

Initially, 12 volunteers at the Technical University of Aachen had a heating device placed on their skin to determine the temperature that each volunteer considered painful (8 out of 10 on a 0 to 10 pain scale). The volunteers were then split into two groups. One group was hypnotized, placed in the fMRI machine and their brain activity scanned while the painful thermal stimuli was applied. Then the hypnotic state was broken and a second fMRI scan was performed without hypnosis while the same painful heat was again applied to the volunteer’s skin. The second group underwent their first fMRI scan without hypnosis followed by a second scan under hypnosis.

Hypnosis was successful in reducing pain perception for all 12 participants. Hypnotized volunteers reported either no pain or significantly reduced pain (less than 3 on the 0-10 pain scale) in response to the painful heat.

Under hypnosis, fMRI showed that brain activity was reduced in areas of the pain network, including the primary sensory cortex, which is responsible for pain perception.

The imaging studies also showed increased activation in two other brain structures - the left anterior cingulate cortex and the basal ganglia. The researchers speculate that increased activity in these two regions may be part of an inhibition pathway that blocks the pain signal from reaching the higher cortical structures responsible for pain perception. However, Schulz-Stubner noted that more detailed fMRI images are needed to definitively identify the exact areas involved in hypnosis-induced pain reduction, and he hoped that the newer generation of fMRI machines would be capable of providing more answers.

"Imaging studies like this one improve our understanding of what might be going on and help researchers ask even more specific questions aimed at identifying the underlying mechanism," Schulz-Stubner said. "It is one piece of the puzzle that moves us a little closer to a final answer for how hypnosis really works.

"More practically, for clinical use, it helps to dispel prejudice about hypnosis as a technique to manage pain because we can show an objective, measurable change in brain activity linked to a reduced perception of pain," he added.

In addition to Schulz-Stubner, the research team included Timo Krings, M.D., Ingo Meister, M.D., Stefen Rex, M.D., Armin Thron, M.D., Ph.D. and Rolf Rossaint, M.D., Ph.D., from the Technical University of Aachen, Germany.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu
http://www.uihealthcare.com

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>