Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance that improves the photodetection of bladder cancer gains European Market approval

04.03.2005


A team of researchers in Switzerland has initiated and contributed to the development of substance that will vastly improve the early detection and treatment of bladder cancer. Patients screened using this new substance are more likely to be correctly diagnosed, and the low recurrence rates associated with its use will lead to improved patient outcomes. This substance, hexaminolevulinate, is the active substance in a new pharmaceutical product that has been developed by the Norwegian company PhotoCure ASA. The new product will be sold under the name Hexvix. Photocure ASA won approval March 2 for market release of this drug in 26 European countries.



Scientists at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in collaboration with Lausanne’s University Hospital (CHUV) and Lausanne University’s Physiology Department have invested more than ten years of research into the development of a fluorescence-inducing compound that may very well revolutionize the photodetection of superficial bladder cancer.

Every year, nearly 200,000 cases of bladder cancer are reported in Europe and the United States. In the US alone, more than 2.5 million screenings take place every year. If caught early, the five-year survival rate from this disease is an encouraging 90%. This drops to 50% when the cancer is locally metastasized and to about 10% for distant metastasis. Catching and treating bladder cancer as quickly as possible is clearly critical for a favorable outcome.


In its early stages, bladder cancer is characterized by superficial tumors or lesions. In conventional screening, a cystoscope is used to visually examine the inside of the bladder, and suspected tumors are removed for biopsy. Upon positive diagnosis, the cystoscope is used again as a surgeon or physician visually identifies and cuts out the cancerous tissue. This “white light” examination and resection is quite difficult for flat lesions and the experience of the individual urologist or surgeon is a considerable variable factor in successful detection. The recurrence rate under this treatment is quite high, and is thought to be due in part to superficial lesions or small tumors that are overlooked during the initial screening and diagnosis.

The use of hexaminolevulinate (HAL) in detection of bladder cancer was initiated by Hubert van den Bergh, Georges Wagnières and colleagues at the EPFL and is part of a slightly different cystoscopy technique. First, HAL as part of the drug is applied to bladder tissue where it is selectively metabolized by cancer cells into a fluorescent compound. About a half hour later, the physician examines the inside of the bladder with a cystoscope, using blue light instead of white light. With the help of a filter placed on the camera, the fluorescent tumors stand out as bright red spots, impossible to miss. Patients screened using this process are far more likely to be diagnosed correctly, and because the cancerous tissue is easy to identify, very small tumors are not likely to be overlooked. Even flat lesions, previously so difficult to detect, are easily spotted and removed. The lower recurrence rates reported with this technique in turn greatly reduce the likelihood of local or distant metastasis.

Exploiting a cellular manufacturing cycle van den Bergh and Wagnières’ group developed this molecule by exploiting naturally occurring cellular processes. Protoporphyrine IX (PPIX), a naturally occuring photoactive porhyrine produced normally as an intermediate step in the cellular manufacture of hemoglobin, is fluorescent, albeit ephemerally. In healthy cells the effect quickly disappears as the molecule takes on an iron atom.

It turns out that cancer cells slightly overproduce photoactive porhyrins, and the enzyme responsible for the next step, adding the iron atom, is also inhibited. These two effects combine in cancerous cells to produce an accumulation of the fluorescent molecule.

Although this naturally occurring accumulation is too feeble to be exploited clinically, van den Bergh and Wagnières’ group used it as a starting point in designing a substance that would increase the basic ingredients needed for its synthesis in the cell. The molecule they came up with, hexaminolevulinate (HAL) causes cells to over-manufacture photoactive porhyrins, and because its further metabolism is slowed down in cancer cells, photoactive porhyrins accumulate to the point where the fluorescent effect can be used clinically. These accumulations are harmless because within 24 hours the body naturally eliminates all traces of the molecule.

Ex vivo and clinical optimization studies using hexaminolevulinate were carried out in collaboration with Pavel Kucera from the Institute of Physiology of the University of Lausanne and Patrice Jichlinski from the department of Urology at the University Hospital in Lausanne.

The development of the drug now means that a strong fluorescent signal can be obtained with short installation times in the bladder. The product has no observed systemic or local side effects.

Photodetection using Hexvix has undergone extensive clinical trials in several European countries, including Switzerland, Germany, Sweden and Norway. Clinical studies aiming at obtaining similar marketing authorization in the US are ongoing.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>