Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance that improves the photodetection of bladder cancer gains European Market approval

04.03.2005


A team of researchers in Switzerland has initiated and contributed to the development of substance that will vastly improve the early detection and treatment of bladder cancer. Patients screened using this new substance are more likely to be correctly diagnosed, and the low recurrence rates associated with its use will lead to improved patient outcomes. This substance, hexaminolevulinate, is the active substance in a new pharmaceutical product that has been developed by the Norwegian company PhotoCure ASA. The new product will be sold under the name Hexvix. Photocure ASA won approval March 2 for market release of this drug in 26 European countries.



Scientists at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in collaboration with Lausanne’s University Hospital (CHUV) and Lausanne University’s Physiology Department have invested more than ten years of research into the development of a fluorescence-inducing compound that may very well revolutionize the photodetection of superficial bladder cancer.

Every year, nearly 200,000 cases of bladder cancer are reported in Europe and the United States. In the US alone, more than 2.5 million screenings take place every year. If caught early, the five-year survival rate from this disease is an encouraging 90%. This drops to 50% when the cancer is locally metastasized and to about 10% for distant metastasis. Catching and treating bladder cancer as quickly as possible is clearly critical for a favorable outcome.


In its early stages, bladder cancer is characterized by superficial tumors or lesions. In conventional screening, a cystoscope is used to visually examine the inside of the bladder, and suspected tumors are removed for biopsy. Upon positive diagnosis, the cystoscope is used again as a surgeon or physician visually identifies and cuts out the cancerous tissue. This “white light” examination and resection is quite difficult for flat lesions and the experience of the individual urologist or surgeon is a considerable variable factor in successful detection. The recurrence rate under this treatment is quite high, and is thought to be due in part to superficial lesions or small tumors that are overlooked during the initial screening and diagnosis.

The use of hexaminolevulinate (HAL) in detection of bladder cancer was initiated by Hubert van den Bergh, Georges Wagnières and colleagues at the EPFL and is part of a slightly different cystoscopy technique. First, HAL as part of the drug is applied to bladder tissue where it is selectively metabolized by cancer cells into a fluorescent compound. About a half hour later, the physician examines the inside of the bladder with a cystoscope, using blue light instead of white light. With the help of a filter placed on the camera, the fluorescent tumors stand out as bright red spots, impossible to miss. Patients screened using this process are far more likely to be diagnosed correctly, and because the cancerous tissue is easy to identify, very small tumors are not likely to be overlooked. Even flat lesions, previously so difficult to detect, are easily spotted and removed. The lower recurrence rates reported with this technique in turn greatly reduce the likelihood of local or distant metastasis.

Exploiting a cellular manufacturing cycle van den Bergh and Wagnières’ group developed this molecule by exploiting naturally occurring cellular processes. Protoporphyrine IX (PPIX), a naturally occuring photoactive porhyrine produced normally as an intermediate step in the cellular manufacture of hemoglobin, is fluorescent, albeit ephemerally. In healthy cells the effect quickly disappears as the molecule takes on an iron atom.

It turns out that cancer cells slightly overproduce photoactive porhyrins, and the enzyme responsible for the next step, adding the iron atom, is also inhibited. These two effects combine in cancerous cells to produce an accumulation of the fluorescent molecule.

Although this naturally occurring accumulation is too feeble to be exploited clinically, van den Bergh and Wagnières’ group used it as a starting point in designing a substance that would increase the basic ingredients needed for its synthesis in the cell. The molecule they came up with, hexaminolevulinate (HAL) causes cells to over-manufacture photoactive porhyrins, and because its further metabolism is slowed down in cancer cells, photoactive porhyrins accumulate to the point where the fluorescent effect can be used clinically. These accumulations are harmless because within 24 hours the body naturally eliminates all traces of the molecule.

Ex vivo and clinical optimization studies using hexaminolevulinate were carried out in collaboration with Pavel Kucera from the Institute of Physiology of the University of Lausanne and Patrice Jichlinski from the department of Urology at the University Hospital in Lausanne.

The development of the drug now means that a strong fluorescent signal can be obtained with short installation times in the bladder. The product has no observed systemic or local side effects.

Photodetection using Hexvix has undergone extensive clinical trials in several European countries, including Switzerland, Germany, Sweden and Norway. Clinical studies aiming at obtaining similar marketing authorization in the US are ongoing.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>