Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance that improves the photodetection of bladder cancer gains European Market approval

04.03.2005


A team of researchers in Switzerland has initiated and contributed to the development of substance that will vastly improve the early detection and treatment of bladder cancer. Patients screened using this new substance are more likely to be correctly diagnosed, and the low recurrence rates associated with its use will lead to improved patient outcomes. This substance, hexaminolevulinate, is the active substance in a new pharmaceutical product that has been developed by the Norwegian company PhotoCure ASA. The new product will be sold under the name Hexvix. Photocure ASA won approval March 2 for market release of this drug in 26 European countries.



Scientists at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in collaboration with Lausanne’s University Hospital (CHUV) and Lausanne University’s Physiology Department have invested more than ten years of research into the development of a fluorescence-inducing compound that may very well revolutionize the photodetection of superficial bladder cancer.

Every year, nearly 200,000 cases of bladder cancer are reported in Europe and the United States. In the US alone, more than 2.5 million screenings take place every year. If caught early, the five-year survival rate from this disease is an encouraging 90%. This drops to 50% when the cancer is locally metastasized and to about 10% for distant metastasis. Catching and treating bladder cancer as quickly as possible is clearly critical for a favorable outcome.


In its early stages, bladder cancer is characterized by superficial tumors or lesions. In conventional screening, a cystoscope is used to visually examine the inside of the bladder, and suspected tumors are removed for biopsy. Upon positive diagnosis, the cystoscope is used again as a surgeon or physician visually identifies and cuts out the cancerous tissue. This “white light” examination and resection is quite difficult for flat lesions and the experience of the individual urologist or surgeon is a considerable variable factor in successful detection. The recurrence rate under this treatment is quite high, and is thought to be due in part to superficial lesions or small tumors that are overlooked during the initial screening and diagnosis.

The use of hexaminolevulinate (HAL) in detection of bladder cancer was initiated by Hubert van den Bergh, Georges Wagnières and colleagues at the EPFL and is part of a slightly different cystoscopy technique. First, HAL as part of the drug is applied to bladder tissue where it is selectively metabolized by cancer cells into a fluorescent compound. About a half hour later, the physician examines the inside of the bladder with a cystoscope, using blue light instead of white light. With the help of a filter placed on the camera, the fluorescent tumors stand out as bright red spots, impossible to miss. Patients screened using this process are far more likely to be diagnosed correctly, and because the cancerous tissue is easy to identify, very small tumors are not likely to be overlooked. Even flat lesions, previously so difficult to detect, are easily spotted and removed. The lower recurrence rates reported with this technique in turn greatly reduce the likelihood of local or distant metastasis.

Exploiting a cellular manufacturing cycle van den Bergh and Wagnières’ group developed this molecule by exploiting naturally occurring cellular processes. Protoporphyrine IX (PPIX), a naturally occuring photoactive porhyrine produced normally as an intermediate step in the cellular manufacture of hemoglobin, is fluorescent, albeit ephemerally. In healthy cells the effect quickly disappears as the molecule takes on an iron atom.

It turns out that cancer cells slightly overproduce photoactive porhyrins, and the enzyme responsible for the next step, adding the iron atom, is also inhibited. These two effects combine in cancerous cells to produce an accumulation of the fluorescent molecule.

Although this naturally occurring accumulation is too feeble to be exploited clinically, van den Bergh and Wagnières’ group used it as a starting point in designing a substance that would increase the basic ingredients needed for its synthesis in the cell. The molecule they came up with, hexaminolevulinate (HAL) causes cells to over-manufacture photoactive porhyrins, and because its further metabolism is slowed down in cancer cells, photoactive porhyrins accumulate to the point where the fluorescent effect can be used clinically. These accumulations are harmless because within 24 hours the body naturally eliminates all traces of the molecule.

Ex vivo and clinical optimization studies using hexaminolevulinate were carried out in collaboration with Pavel Kucera from the Institute of Physiology of the University of Lausanne and Patrice Jichlinski from the department of Urology at the University Hospital in Lausanne.

The development of the drug now means that a strong fluorescent signal can be obtained with short installation times in the bladder. The product has no observed systemic or local side effects.

Photodetection using Hexvix has undergone extensive clinical trials in several European countries, including Switzerland, Germany, Sweden and Norway. Clinical studies aiming at obtaining similar marketing authorization in the US are ongoing.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>