Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schepens scientists regenerate optic nerve for the first time

24.02.2005


New hope for sufferers of glaucoma and spinal cord injuries

For the first time, scientists have regenerated a damaged optic nerve -- from the eye to the brain. This achievement, which occurred in laboratory mice and is described in the March 1, 2005 issue of the Journal of Cell Science, holds great promise for victims of diseases that destroy the optic nerve, and for sufferers of central nervous system injuries. "For us, this is a dream becoming reality," says Dr. Dong Feng Chen, lead author of the study, assistant scientist at Schepens Eye Research Institute and an assistant professor of ophthalmology at Harvard Medical School. "This is the closest science has come to regenerating so many nerve fibers over a long distance to reach their targets and to repair a nerve previously considered irreparably damaged."

This research, which has been supported in part by grants from the National Institutes of Health, the Department of Defense and the Massachusetts Lions Club, has always been a priority of the institute, but in recent times, urgency around it has increased, according to Dr. Michael Gilmore, director of research at Schepens Eye Research Institute and professor of ophthalmology at Harvard Medical School. In addition to the thousands of Americans blinded by glaucoma and injuries that destroy the optic nerve, and hundreds of thousands disabled by spinal cord injuries, "we were hearing stories of soldiers in the Middle East whose lives were saved by body armor, but who were returning with severe damage to limbs and eyes," he says. "At the same time, we learned of the untimely death of Christopher Reeves. It was, therefore, a priority for us to redouble our efforts to find ways to restore damaged nerves."



According to Senator John Kerry, who supported funding of this important work, "Schepens is doing cutting-edge research that can make a real difference for a new generation of troops returning home with nerve damage. We need to support our troops in actions, not just words, and I am glad that we have been able to get funding for this important work." Adds Congressman Lynch, "Last month, I visited the Walter Reed Army Medical Center in Washington and met with dozens of service men and women who could benefit directly from the good work of the people at Schepens. Their vital research will not only enhance the lives of our soldiers but also gives hope to every American who suffers from diseases of the central nervous system."

Many tissues in the body continually renew themselves if injured. However, this is not true for nerve cells or their fibers (axons) in the Central Nervous System (CNS). The CNS consists of the brain (of which the eye and optic nerve are part) and the spinal cord. For all mammals, including human beings, CNS nerves lose their ability to regenerate after injury at the point in their development when they are fully formed. For example, the optic nerve loses this ability shortly before birth. So for those afflicted by glaucoma, which destroys the optic nerve through excessive internal pressure, or with injuries that sever the optic nerve after that developmental milestone, destruction can be permanent and blinding.

Chen and her research team have dedicated themselves to learning the reasons why CNS tissue stops regenerating and to finding ways to reverse that process, using the optic nerve as their research model. The optic nerve, which connects the eye to the brain, consists of millions of nerve cells, which, when uninjured, transmit visual information from the retina to the brain for interpretation

In earlier research, Chen’s team discovered several processes that they believed "locked up" the optic nerve’s ability to regenerate. The first lock, they found, was the turning off of a specific gene – BCL-2 – which, when turned on, activates growth and regeneration. The second lock, they theorized, was a scar on the brain created shortly after birth by "glial" cells. (glial cells have many functions in the brain, one of which is to create this kind of scar tissue). The researchers believed that the scar puts up a physical as well as molecular barrier to regeneration. Although there may be other "locks" to the regeneration door, Chen and her colleagues believed these two were the most important.

In the current research, Dr. Kin-Sang Cho, research associate in Chen’s laboratory and the first author of the paper, tested two keys to unlock regeneration. The first key involved the development of a mouse model in which the BCL-2 gene is always turned on (or is overexpressing). The second key was the use of a mouse line carrying mutations of "glial specific genes" that lead to the reduced "glial scar" formation.

By unlocking the regeneration with the first key, for the first time, they observed robust optic nerve regeneration in postnatal mice, which nerves grew rapidly and reached from the eye to the brain in four days. But the regeneration happens only in the younger mice whose brains had not yet formed a "glial scar." In the mice that were slightly older and had developed the "glial scar," regeneration failed again.

Dr. Cho then added the second key by combining BCL-2 overexpresser with the "glial gene" mutation to prevent the development of the "glial scar" in the older transgenic mice. He found that the combination of the turned-on BCL-2 and the mutation of "glial specific genes" caused the optic nerves to return to an embryonic state and stimulated rapid, robust regeneration of the optic nerve--again, as with the younger mice – within only a few days. "We could see that at least 40 percent of the optic nerve had been restored," says Chen, "but we believe that an even higher percentage actually regenerated."

The next step for Chen and her colleagues is to determine if the regenerated optic nerves were functional. In other words, did they cause the mice to see again? Chen also believes that this combination BCL-2 and scar prevention technique could work to regenerate other Central Nervous System tissue, increasing the possibility that spinal cord patients could walk or move again.

This work has important implications. "The possibility of restoring sight following optic nerve injuries is tremendous. Fifteen percent of all wartime injuries include the eye and those with optic nerve trauma are the most grave. Today’s medicine has little effective treatment to offer and blindness is often the end result," says Retired Lieutenant Colonel Robert C. Read of the Clinical Applications Division at the Department of Defense’s Telemedicine and Advanced Technology Research Center.

"This outstanding breakthrough by Schepens scientists offers new hope to those who suffer from blinding diseases and injuries, including our returning soldiers. The potential application of this discovery to treatments for other central nervous system injuries is yet another reason why I have been proud to support the Department of Defense’s funding of the Center for Excellence in Military Low Vision Research," stated Congressman Mike Capuano.

Adds Congressman Stephen F. Lynch, "This extraordinary breakthrough demonstrates what we can achieve when we support public and private partnerships between the Defense Department and the best researchers and scientists in the field. Because of the decades of work and progress by Dr. Gilmore and Dr. Chen and the entire team at the Schepens Eye Research Institute, the search for a way to repair nerve damage in the human body has taken a giant leap forward."

"I’m so pleased with the work going on at Schepens," Rep. Jim McGovern says. "They are on the frontiers of research that will dramatically improve people’s lives. And the Federal Government must continue to be a partner in this vital effort."

Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu/
http://www.theschepens.org/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>