Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigational transplant drug effectively preserves kidneys while avoiding toxic side effects

23.02.2005


Yerkes-based nonhuman primate studies expedited research for medication recently studied in phase II human clinical trials



Physician-researchers at Emory University in Atlanta have shown an investigational medication, known as LEA29Y (belatacept), is effective in preserving transplanted kidney function while at the same time avoiding the toxic side effects that are common in the currently used long-term, immunosuppressive transplant medications. The pre-clinical research conducted with nonhuman primates at the Yerkes National Primate Research center was an important step in establishing human clinical trials to develop an effective alternative to current anti-rejection therapies. Findings from one of the nonhuman primate studies appear in the March issue of the American Journal of Transplantation, which currently is online and appeared in print on February 21.

More than 23,000 organ transplants are performed each year in the United States. While current immunosuppressant medications have reduced the incidence of early organ failure following transplants, measures to prevent late failure and to halt other diseases that result from toxic side effects of current treatments have been limited.


Cyclosporine, the current standard of care following organ transplantation, prevents initial organ rejection by effectively blocking certain immune system pathways that are activated when the body detects foreign cells. At the same time, though, cyclosporine indiscriminately targets and blocks other cellular signal pathways, causing serious side effects such as high blood pressure and cholesterol, which may lead to cardiovascular disease, and high kidney toxicity that ultimately leads to long-term renal failure. In addition, long-term cyclosporine use damages the body’s immune system and prevents it from fighting off other infections following transplant.

"For the past 20 years, transplant patients have been treated with cyclosporine-like medications that effectively suppressed the immune system to prevent the body from rejecting the new organ," said Christian Larsen, MD, DPhil, director of the Emory Transplant Center. "The problem is, the medication not only shuts down the immune system, but has side effects that increase the risk of heart attacks and can damage the kidney. We need to develop a medication as effective as cyclosporine in preventing initial rejection, while at the same time preserving the kidney and providing better patient outcomes."

Dr. Larsen and Thomas Pearson, MD, DPhil, with colleagues at Bristol-Myers Squibb Pharmaceutical Research Institute, developed LEA29Y to selectively block the second of two cellular signals (co-stimulatory signals) the body needs to trigger an immune response. Blocking this co-stimulatory signal prevents organ rejection while allowing the body to continue fighting other infections.

Following in vitro studies, during which the researchers observed LEA29Y was 10 times more effective than cyclosporine in blocking the co-stimulatory immune signal, Drs. Larsen and Pearson tested the drug in nonhuman primates and found that it significantly prolonged survival of transplanted kidneys.

"The studies with nonhuman primates were critical because, while we knew the co-stimulatory blocker was effective in vitro, we needed to study it in a living organism," said Dr. Larsen. "The nonhuman primate studies allowed us to take a bold step toward studying this medication in humans to determine if it is a better choice than the current standard of care. Working with nonhuman primates enabled us to expedite the research process by four or five years."

The research team recently completed a phase II clinical study comparing LEA29Y to cyclosporine in human kidney transplant patients. On behalf of investigators from 22 transplant centers worldwide. Dr. Larsen will present results from the phase II study at the annual American Transplant Congress May 20 – 25 in Seattle. Multiple phase III studies currently are being planned.

Lisa Newbern | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>