Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigational transplant drug effectively preserves kidneys while avoiding toxic side effects

23.02.2005


Yerkes-based nonhuman primate studies expedited research for medication recently studied in phase II human clinical trials



Physician-researchers at Emory University in Atlanta have shown an investigational medication, known as LEA29Y (belatacept), is effective in preserving transplanted kidney function while at the same time avoiding the toxic side effects that are common in the currently used long-term, immunosuppressive transplant medications. The pre-clinical research conducted with nonhuman primates at the Yerkes National Primate Research center was an important step in establishing human clinical trials to develop an effective alternative to current anti-rejection therapies. Findings from one of the nonhuman primate studies appear in the March issue of the American Journal of Transplantation, which currently is online and appeared in print on February 21.

More than 23,000 organ transplants are performed each year in the United States. While current immunosuppressant medications have reduced the incidence of early organ failure following transplants, measures to prevent late failure and to halt other diseases that result from toxic side effects of current treatments have been limited.


Cyclosporine, the current standard of care following organ transplantation, prevents initial organ rejection by effectively blocking certain immune system pathways that are activated when the body detects foreign cells. At the same time, though, cyclosporine indiscriminately targets and blocks other cellular signal pathways, causing serious side effects such as high blood pressure and cholesterol, which may lead to cardiovascular disease, and high kidney toxicity that ultimately leads to long-term renal failure. In addition, long-term cyclosporine use damages the body’s immune system and prevents it from fighting off other infections following transplant.

"For the past 20 years, transplant patients have been treated with cyclosporine-like medications that effectively suppressed the immune system to prevent the body from rejecting the new organ," said Christian Larsen, MD, DPhil, director of the Emory Transplant Center. "The problem is, the medication not only shuts down the immune system, but has side effects that increase the risk of heart attacks and can damage the kidney. We need to develop a medication as effective as cyclosporine in preventing initial rejection, while at the same time preserving the kidney and providing better patient outcomes."

Dr. Larsen and Thomas Pearson, MD, DPhil, with colleagues at Bristol-Myers Squibb Pharmaceutical Research Institute, developed LEA29Y to selectively block the second of two cellular signals (co-stimulatory signals) the body needs to trigger an immune response. Blocking this co-stimulatory signal prevents organ rejection while allowing the body to continue fighting other infections.

Following in vitro studies, during which the researchers observed LEA29Y was 10 times more effective than cyclosporine in blocking the co-stimulatory immune signal, Drs. Larsen and Pearson tested the drug in nonhuman primates and found that it significantly prolonged survival of transplanted kidneys.

"The studies with nonhuman primates were critical because, while we knew the co-stimulatory blocker was effective in vitro, we needed to study it in a living organism," said Dr. Larsen. "The nonhuman primate studies allowed us to take a bold step toward studying this medication in humans to determine if it is a better choice than the current standard of care. Working with nonhuman primates enabled us to expedite the research process by four or five years."

The research team recently completed a phase II clinical study comparing LEA29Y to cyclosporine in human kidney transplant patients. On behalf of investigators from 22 transplant centers worldwide. Dr. Larsen will present results from the phase II study at the annual American Transplant Congress May 20 – 25 in Seattle. Multiple phase III studies currently are being planned.

Lisa Newbern | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>