Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marijuana ingredient may stall decline from Alzheimer’s

23.02.2005


New research shows that a synthetic analogue of the active component of marijuana may reduce the inflammation and prevent the mental decline associated with Alzheimer’s disease.



"This research is not only a major step in our understanding [of] how the brain reacts to Alzheimer’s disease, but may also help open a route to novel anti-Alzheimer’s drugs," says Raphael Mechoulam, professor emeritus of medicinal chemistry at Hebrew University in Jerusalem and discoverer of marijuana’s active component.

To show the preventive effects of cannabinoids on Alzheimer’s disease, researchers at the Cajal Institute and Complutense University in Madrid, led by Maria de Ceballos, conducted studies using human brain tissue, as well as experiments with rats. The study appears in the February 23, 2005, issue of The Journal of Neuroscience.


The team first compared the brain tissue of patients who died from Alzheimer’s disease with that of healthy people who had died at a similar age. They looked closely at cannabinoid receptors CB1 and CB2– proteins to which cannabinoids bind, allowing their effects to be felt – and at microglia, which activate the brain’s immune response. Micro- glia collect near plaques and, when active, cause inflammation. The researchers found a dramatically reduced functioning of cannabinoid receptors in diseased brain tissue, meaning that patients had lost the capacity to experience cannabinoids’ protective effects.

In addition, the researchers showed that cannabinoids prevented cognitive decline through rat experiments. They injected either amyloid (which leads to cognitive decline) that had been allowed to aggregate or control proteins into the brains of rats for one week. Other rats were injected with a cannabinoid and either amyloid or a control protein.

After two months, the researchers trained the rats over five days to find a platform hidden underwater. Rats treated with the control protein – with or without cannabinoids – and those treated with the amyloid protein and cannabinoid were able to find the platform. Rats treated with amyloid protein alone did not learn how to find the platform.

The researchers found that the presence of amyloid protein in the rats’ brains activated immune cells. Rats that received the control protein alone or cannabinoid and a control protein did not show activation of microglia. Using cell cultures, the investigators confirmed that cannabinoids counteracted the activation of microglia and thus reduced inflammation.

"These findings that cannabinoids work both to prevent inflammation and to protect the brain may set the stage for their use as a therapeutic approach for [Alzheimer’s disease]," de Ceballos says. The scientists will now focus their efforts on targeting one of the two main cannabinoid receptors that is not involved in producing the psychotropic effects, or high, from marijuana.

Elissa Petruzzi | EurekAlert!
Further information:
http://www.sfn.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>