Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical tension helps shape lung development

18.02.2005


Findings might help improve lung growth in premature infants



Organ development in the embryo requires precise coordination and timing of cell growth in three-dimensional space to produce the correct anatomic form and shape. Researchers at Children’s Hospital Boston, led by Dr. Donald Ingber, a senior researcher in the Vascular Biology Program, have demonstrated that the process of budding and branching in the developing lung is driven by mechanical forces generated within individual cells. They have also identified a possible biochemical target for intervention. These insights could lead to new ways to prevent, minimize or even correct diseases and anomalies of the lungs, which are common in premature newborns.

Previously, Ingber and colleagues have shown that epithelial tissues – the thin cell layers that line organs and other body structures, including the lung’s airways -- take their characteristic three-dimensional forms through differences in cell growth in different spatial locations. This cell growth is influenced by changes in the extracellular matrix, the flexible, egg-carton-like structure that surrounds and supports cells. Cells are physically connected to the matrix via their cytoskeleton, an internal scaffolding of crisscrossing fibers and tubes that generates tensional forces like those in muscle. Through these tensed connections, cells can "feel" mechanical forces that push and pull on the tissue they are in. If they feel a stretch, cells will begin to proliferate; if they feel compressed, they stop growing and may begin to die off. The parts of the tissue with greater cell growth expand more rapidly than the surrounding areas, causing buds and branches to form.


In this new paper, published in the February 2005 issue of Developmental Dynamics, Ingber and colleagues manipulated the mechanical force felt by developing mouse lungs by modulating the activity of a cellular signaling enzyme called Rho. Rho facilitates a chemical reaction that causes contraction of fibers in the cytoskeleton, increasing tension in the cell and in its connections to the matrix. Ingber’s team put lungs from embryonic mice in culture and exposed them to various chemical agents that stimulate or inhibit Rho’s activity. In normal mice, photographs taken every 12 hours as the lungs grew showed each bud enlarging until a cleft formed in its tip, pinching it into two or three new buds.

When lungs were treated with inhibitors of the Rho pathway, lung bud formation was reduced by more than half when examined 48 hours later. When treated with agents that activate Rho and promote cytoskeletal contraction, budding increased. The agents had similar effects on the growth and development of nearby capillary blood vessels, which must grow in tandem with lung tissue to form a functional organ.

"We’ve showed that we can slow down lung development and capillary growth by decreasing the level of tension in the cytoskeleton, or speed up development by increasing the tension," says Ingber, the Judah Folkman Professor of Vascular Biology at Harvard Medical School. "This work could lead to novel therapeutic approaches to accelerate lung development in premature infants who often are debilitated by incomplete lung formation."

Dr. Stella Kourembanas, chief of Newborn Medicine at Children’s, says that Ingber’s findings could lead to new approaches to treating bronchopulmonary dysplasia, a serious lung injury that affects 30 to 40 percent of all premature babies, and lung hypoplasia, in which the lungs are compressed and cannot develop fully, often due to congenital diaphragmatic hernias, which occur in 1 of 2,500 births. Kourembanas is directing an NIH-funded project on the pathology of lung development, of which Ingber is a part. "Don’s work gives us an understanding of how normal lung growth occurs, and gives us tremendous insights into potential intervention pathways," she says.

Ingber is a pioneer in the new, growing field of mechanobiology--the study of how physical forces affect the function and behavior of living cells and tissues and, ultimately, disease. At the turn of the last century, scientists commonly described biological phenomena in terms of mechanics. "The early developmental biologists watched embryos developing, and saw it as a mechanical process," Ingber says.

This appreciation of mechanics and form fell away as the 20th century progressed. With the advent of molecular biology in the 1970s and 1980s, scientists became focused on finding and mapping individual chemicals and genes as a way of understanding physiology and disease. In this new paper, Ingber and colleagues clearly show that molecular signaling and mechanical forces work hand in hand.

Susan Craig | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>