Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical tension helps shape lung development

18.02.2005


Findings might help improve lung growth in premature infants



Organ development in the embryo requires precise coordination and timing of cell growth in three-dimensional space to produce the correct anatomic form and shape. Researchers at Children’s Hospital Boston, led by Dr. Donald Ingber, a senior researcher in the Vascular Biology Program, have demonstrated that the process of budding and branching in the developing lung is driven by mechanical forces generated within individual cells. They have also identified a possible biochemical target for intervention. These insights could lead to new ways to prevent, minimize or even correct diseases and anomalies of the lungs, which are common in premature newborns.

Previously, Ingber and colleagues have shown that epithelial tissues – the thin cell layers that line organs and other body structures, including the lung’s airways -- take their characteristic three-dimensional forms through differences in cell growth in different spatial locations. This cell growth is influenced by changes in the extracellular matrix, the flexible, egg-carton-like structure that surrounds and supports cells. Cells are physically connected to the matrix via their cytoskeleton, an internal scaffolding of crisscrossing fibers and tubes that generates tensional forces like those in muscle. Through these tensed connections, cells can "feel" mechanical forces that push and pull on the tissue they are in. If they feel a stretch, cells will begin to proliferate; if they feel compressed, they stop growing and may begin to die off. The parts of the tissue with greater cell growth expand more rapidly than the surrounding areas, causing buds and branches to form.


In this new paper, published in the February 2005 issue of Developmental Dynamics, Ingber and colleagues manipulated the mechanical force felt by developing mouse lungs by modulating the activity of a cellular signaling enzyme called Rho. Rho facilitates a chemical reaction that causes contraction of fibers in the cytoskeleton, increasing tension in the cell and in its connections to the matrix. Ingber’s team put lungs from embryonic mice in culture and exposed them to various chemical agents that stimulate or inhibit Rho’s activity. In normal mice, photographs taken every 12 hours as the lungs grew showed each bud enlarging until a cleft formed in its tip, pinching it into two or three new buds.

When lungs were treated with inhibitors of the Rho pathway, lung bud formation was reduced by more than half when examined 48 hours later. When treated with agents that activate Rho and promote cytoskeletal contraction, budding increased. The agents had similar effects on the growth and development of nearby capillary blood vessels, which must grow in tandem with lung tissue to form a functional organ.

"We’ve showed that we can slow down lung development and capillary growth by decreasing the level of tension in the cytoskeleton, or speed up development by increasing the tension," says Ingber, the Judah Folkman Professor of Vascular Biology at Harvard Medical School. "This work could lead to novel therapeutic approaches to accelerate lung development in premature infants who often are debilitated by incomplete lung formation."

Dr. Stella Kourembanas, chief of Newborn Medicine at Children’s, says that Ingber’s findings could lead to new approaches to treating bronchopulmonary dysplasia, a serious lung injury that affects 30 to 40 percent of all premature babies, and lung hypoplasia, in which the lungs are compressed and cannot develop fully, often due to congenital diaphragmatic hernias, which occur in 1 of 2,500 births. Kourembanas is directing an NIH-funded project on the pathology of lung development, of which Ingber is a part. "Don’s work gives us an understanding of how normal lung growth occurs, and gives us tremendous insights into potential intervention pathways," she says.

Ingber is a pioneer in the new, growing field of mechanobiology--the study of how physical forces affect the function and behavior of living cells and tissues and, ultimately, disease. At the turn of the last century, scientists commonly described biological phenomena in terms of mechanics. "The early developmental biologists watched embryos developing, and saw it as a mechanical process," Ingber says.

This appreciation of mechanics and form fell away as the 20th century progressed. With the advent of molecular biology in the 1970s and 1980s, scientists became focused on finding and mapping individual chemicals and genes as a way of understanding physiology and disease. In this new paper, Ingber and colleagues clearly show that molecular signaling and mechanical forces work hand in hand.

Susan Craig | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>