Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical tension helps shape lung development

18.02.2005


Findings might help improve lung growth in premature infants



Organ development in the embryo requires precise coordination and timing of cell growth in three-dimensional space to produce the correct anatomic form and shape. Researchers at Children’s Hospital Boston, led by Dr. Donald Ingber, a senior researcher in the Vascular Biology Program, have demonstrated that the process of budding and branching in the developing lung is driven by mechanical forces generated within individual cells. They have also identified a possible biochemical target for intervention. These insights could lead to new ways to prevent, minimize or even correct diseases and anomalies of the lungs, which are common in premature newborns.

Previously, Ingber and colleagues have shown that epithelial tissues – the thin cell layers that line organs and other body structures, including the lung’s airways -- take their characteristic three-dimensional forms through differences in cell growth in different spatial locations. This cell growth is influenced by changes in the extracellular matrix, the flexible, egg-carton-like structure that surrounds and supports cells. Cells are physically connected to the matrix via their cytoskeleton, an internal scaffolding of crisscrossing fibers and tubes that generates tensional forces like those in muscle. Through these tensed connections, cells can "feel" mechanical forces that push and pull on the tissue they are in. If they feel a stretch, cells will begin to proliferate; if they feel compressed, they stop growing and may begin to die off. The parts of the tissue with greater cell growth expand more rapidly than the surrounding areas, causing buds and branches to form.


In this new paper, published in the February 2005 issue of Developmental Dynamics, Ingber and colleagues manipulated the mechanical force felt by developing mouse lungs by modulating the activity of a cellular signaling enzyme called Rho. Rho facilitates a chemical reaction that causes contraction of fibers in the cytoskeleton, increasing tension in the cell and in its connections to the matrix. Ingber’s team put lungs from embryonic mice in culture and exposed them to various chemical agents that stimulate or inhibit Rho’s activity. In normal mice, photographs taken every 12 hours as the lungs grew showed each bud enlarging until a cleft formed in its tip, pinching it into two or three new buds.

When lungs were treated with inhibitors of the Rho pathway, lung bud formation was reduced by more than half when examined 48 hours later. When treated with agents that activate Rho and promote cytoskeletal contraction, budding increased. The agents had similar effects on the growth and development of nearby capillary blood vessels, which must grow in tandem with lung tissue to form a functional organ.

"We’ve showed that we can slow down lung development and capillary growth by decreasing the level of tension in the cytoskeleton, or speed up development by increasing the tension," says Ingber, the Judah Folkman Professor of Vascular Biology at Harvard Medical School. "This work could lead to novel therapeutic approaches to accelerate lung development in premature infants who often are debilitated by incomplete lung formation."

Dr. Stella Kourembanas, chief of Newborn Medicine at Children’s, says that Ingber’s findings could lead to new approaches to treating bronchopulmonary dysplasia, a serious lung injury that affects 30 to 40 percent of all premature babies, and lung hypoplasia, in which the lungs are compressed and cannot develop fully, often due to congenital diaphragmatic hernias, which occur in 1 of 2,500 births. Kourembanas is directing an NIH-funded project on the pathology of lung development, of which Ingber is a part. "Don’s work gives us an understanding of how normal lung growth occurs, and gives us tremendous insights into potential intervention pathways," she says.

Ingber is a pioneer in the new, growing field of mechanobiology--the study of how physical forces affect the function and behavior of living cells and tissues and, ultimately, disease. At the turn of the last century, scientists commonly described biological phenomena in terms of mechanics. "The early developmental biologists watched embryos developing, and saw it as a mechanical process," Ingber says.

This appreciation of mechanics and form fell away as the 20th century progressed. With the advent of molecular biology in the 1970s and 1980s, scientists became focused on finding and mapping individual chemicals and genes as a way of understanding physiology and disease. In this new paper, Ingber and colleagues clearly show that molecular signaling and mechanical forces work hand in hand.

Susan Craig | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>