Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical tension helps shape lung development

18.02.2005


Findings might help improve lung growth in premature infants



Organ development in the embryo requires precise coordination and timing of cell growth in three-dimensional space to produce the correct anatomic form and shape. Researchers at Children’s Hospital Boston, led by Dr. Donald Ingber, a senior researcher in the Vascular Biology Program, have demonstrated that the process of budding and branching in the developing lung is driven by mechanical forces generated within individual cells. They have also identified a possible biochemical target for intervention. These insights could lead to new ways to prevent, minimize or even correct diseases and anomalies of the lungs, which are common in premature newborns.

Previously, Ingber and colleagues have shown that epithelial tissues – the thin cell layers that line organs and other body structures, including the lung’s airways -- take their characteristic three-dimensional forms through differences in cell growth in different spatial locations. This cell growth is influenced by changes in the extracellular matrix, the flexible, egg-carton-like structure that surrounds and supports cells. Cells are physically connected to the matrix via their cytoskeleton, an internal scaffolding of crisscrossing fibers and tubes that generates tensional forces like those in muscle. Through these tensed connections, cells can "feel" mechanical forces that push and pull on the tissue they are in. If they feel a stretch, cells will begin to proliferate; if they feel compressed, they stop growing and may begin to die off. The parts of the tissue with greater cell growth expand more rapidly than the surrounding areas, causing buds and branches to form.


In this new paper, published in the February 2005 issue of Developmental Dynamics, Ingber and colleagues manipulated the mechanical force felt by developing mouse lungs by modulating the activity of a cellular signaling enzyme called Rho. Rho facilitates a chemical reaction that causes contraction of fibers in the cytoskeleton, increasing tension in the cell and in its connections to the matrix. Ingber’s team put lungs from embryonic mice in culture and exposed them to various chemical agents that stimulate or inhibit Rho’s activity. In normal mice, photographs taken every 12 hours as the lungs grew showed each bud enlarging until a cleft formed in its tip, pinching it into two or three new buds.

When lungs were treated with inhibitors of the Rho pathway, lung bud formation was reduced by more than half when examined 48 hours later. When treated with agents that activate Rho and promote cytoskeletal contraction, budding increased. The agents had similar effects on the growth and development of nearby capillary blood vessels, which must grow in tandem with lung tissue to form a functional organ.

"We’ve showed that we can slow down lung development and capillary growth by decreasing the level of tension in the cytoskeleton, or speed up development by increasing the tension," says Ingber, the Judah Folkman Professor of Vascular Biology at Harvard Medical School. "This work could lead to novel therapeutic approaches to accelerate lung development in premature infants who often are debilitated by incomplete lung formation."

Dr. Stella Kourembanas, chief of Newborn Medicine at Children’s, says that Ingber’s findings could lead to new approaches to treating bronchopulmonary dysplasia, a serious lung injury that affects 30 to 40 percent of all premature babies, and lung hypoplasia, in which the lungs are compressed and cannot develop fully, often due to congenital diaphragmatic hernias, which occur in 1 of 2,500 births. Kourembanas is directing an NIH-funded project on the pathology of lung development, of which Ingber is a part. "Don’s work gives us an understanding of how normal lung growth occurs, and gives us tremendous insights into potential intervention pathways," she says.

Ingber is a pioneer in the new, growing field of mechanobiology--the study of how physical forces affect the function and behavior of living cells and tissues and, ultimately, disease. At the turn of the last century, scientists commonly described biological phenomena in terms of mechanics. "The early developmental biologists watched embryos developing, and saw it as a mechanical process," Ingber says.

This appreciation of mechanics and form fell away as the 20th century progressed. With the advent of molecular biology in the 1970s and 1980s, scientists became focused on finding and mapping individual chemicals and genes as a way of understanding physiology and disease. In this new paper, Ingber and colleagues clearly show that molecular signaling and mechanical forces work hand in hand.

Susan Craig | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>