Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ingestion of Afterbirth Appears to Promote Maternal Behavior in Mammals

14.02.2005


A behavioral neuroscientist at the University at Buffalo holds that the ingestion of afterbirth by a mother, a feature of pregnancy in nearly all non-human mammals, not only relieves postpartum pain, but optimizes the onset of maternal behavior by mediating the activity of specific opioid activity circuits in the brain.



Mark Kristal, Ph.D., professor of psychology at UB and director the graduate program in behavioral neuroscience, has received a two-year $200,000 grant from the National Science Foundation, to test his hypothesis. In 1986 Kristal discovered an opioid-enhancing molecule he called the Placental Opioid-Enhancing Factor or POEF. His discovery led to a series of studies that shed light on the way in which POEF modulates how opioids inhibit nociceptive processing in the nervous system -- processing in specific areas of the brain that recognize certain kinds of pain.

Kristal says this research may lead to novel ways of treating addiction in humans by manipulating the effectiveness of the opiates we produce in our own bodies. It also may enable physicians to obtain current levels of pain relief, he says, "by administering much, much, much smaller amounts of opioid analgesics." POEF is found in amniotic fluid and afterbirth. The new study, whose subjects will be mice, will test the hypothesis that it not only modulates pain, but operates on two specific brain centers to influence the subsequent emergence of maternal behavior. "We think that endogenous opioid activation in the central nervous system at the end of pregnancy and during delivery -- that is, activity produced within the mammal, not introduced from without -- has a complex effect on maternal behavior," Kristal says. "It is our contention that this activation not only suppresses pain during delivery, but is responsible as well for the emergence of caretaking behavior toward the young.


"This activation is best described by focusing on two sites in the brain where it takes place," he says. "Increased opioid activity in the ventral tegmental area, a motivation area of the brain, facilitates the onset of maternal behavior. Increased opioid activity in the medial preoptic area, however, a reproductive-behavior area of the brain, disrupts maternal behavior," Kristal explains. "What we will test here is the hypothesis that afterbirth, when ingested, modifies specific opioid-receptor systems in those two brain regions," he says. "We think that, in particular, POEF optimizes the onset of maternal behavior by enhancing the facilitating effect of opioids in the ventral tegmental area and attenuating the disruptive effects of opioids in the medial preoptic area. It does this by modifying the different types of opioid receptors in different ways."

"Humans don’t eat afterbirth, of course," says Kristal. "In fact, there may be an adaptation in humans that mitigates against ingestion. We don’t know. The introduction of POEF to human mothers after delivery to influence maternal behavior cannot be addressed at this point. "Parturition in mammals occurs in the context of sensory, neurochemical and endocrinologoical factors orchestrated and timed so that maternal behavior and the object of this behavior, the newborn, ’emerge’ almost simultaneously," Kristal says.

"In most species of mammals, these changes likely are initiated by sensory events arising in the distended reproductive tract and abdominal musculature and are modified by several things, including endocrine levels during delivery and the ingestion of substances by the mother in amniotic fluid and afterbirth," he says. "Our goal here is to determine exactly how those substances, including POEF, interact with opioid activation areas in the brain and to describe the results of that interaction in non-human mammals."

Kristal is the former dean of the Faculty of Social Sciences at UB. In addition to his basic research into opioid and hormonal mechanisms, he studies the psychobiology of motivated behaviors.

His research regularly is published in such journals as Brain Research; Pharmacology, Biochemistry & Behavior, Synapse, Physiology & Behavior and Comparative Medicine.

Patricia Donovan | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>