Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transport system smuggles medicines into brain

14.02.2005


Dutch researcher Corine Visser investigated a new way of transporting medicines into the brain. Her approach made use of an iron transport system located on the blood-brain barrier. The smaller the medicine, the more easily it penetrates the brain.



A special barrier between the blood and the brain, the so-called blood-brain barrier (BBB), protects the brain from toxic substances. It only lets through important nutrients for the brain such as iron, glucose and oxygen. Visser allowed larger molecules, such as medicines, to pass through the blood-brain barrier by attaching these to the iron-containing protein transferrin. This technique allowed the medicines to ’hitch a lift’ and pass unnoticed though the BBB. How much medicine reaches the brain depends on the size of the molecule attached to the transferrin.

Much of the BBB is made up of capillary endothelial cells, the cells which line the walls of blood vessels. In the brain, unlike other parts of the body, these cells are closely packed together. This makes it almost impossible for substances to pass between the cells. Further in the brain, few substances can pass through the endothelial cells.


Transferrin is a protein in the blood that contains two iron atoms. On reaching the BBB it binds to transferrin receptors on the endothelial cells. Once the transferrin has bound to the receptor, a vesicle in the cell completely engulfs it. The transferrin then releases the iron atoms, which are brought to the brain by another protein. A major advantage of this transport system with vesicles is that larger molecules can pass through the BBB. The vesicle has a diameter of about 120 nanometres.

Conjugation

In three stages, Visser investigated how medicines can enter the brain via the transferrin receptor. In the first stage she demonstrated the presence of the receptor in her BBB model by using radioactively-labelled transferrin. She then conjugated an enzyme to the transferrin. With the enzyme attached, the transferrin also bound to the receptor and was taken up in the cells of the BBB.

Finally, Visser attached a tiny fat bubble (liposome) containing small molecules, such as medicines, to the transferrin. She discovered that the transferrin with the liposome attached was also taken up by the cell. However, the cell subsequently broke down the liposomal content, because the liposomes were significantly bigger than the previously linked enzyme. Liposomes have a diameter of 100 nanometres and the enzyme a diameter of 3 to 4 nanometres. Therefore a liposome or a direct conjugation can be chosen, dependent on the intracellular destination of the medicine.

Dr Corine Visser | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>