Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transport system smuggles medicines into brain

14.02.2005


Dutch researcher Corine Visser investigated a new way of transporting medicines into the brain. Her approach made use of an iron transport system located on the blood-brain barrier. The smaller the medicine, the more easily it penetrates the brain.



A special barrier between the blood and the brain, the so-called blood-brain barrier (BBB), protects the brain from toxic substances. It only lets through important nutrients for the brain such as iron, glucose and oxygen. Visser allowed larger molecules, such as medicines, to pass through the blood-brain barrier by attaching these to the iron-containing protein transferrin. This technique allowed the medicines to ’hitch a lift’ and pass unnoticed though the BBB. How much medicine reaches the brain depends on the size of the molecule attached to the transferrin.

Much of the BBB is made up of capillary endothelial cells, the cells which line the walls of blood vessels. In the brain, unlike other parts of the body, these cells are closely packed together. This makes it almost impossible for substances to pass between the cells. Further in the brain, few substances can pass through the endothelial cells.


Transferrin is a protein in the blood that contains two iron atoms. On reaching the BBB it binds to transferrin receptors on the endothelial cells. Once the transferrin has bound to the receptor, a vesicle in the cell completely engulfs it. The transferrin then releases the iron atoms, which are brought to the brain by another protein. A major advantage of this transport system with vesicles is that larger molecules can pass through the BBB. The vesicle has a diameter of about 120 nanometres.

Conjugation

In three stages, Visser investigated how medicines can enter the brain via the transferrin receptor. In the first stage she demonstrated the presence of the receptor in her BBB model by using radioactively-labelled transferrin. She then conjugated an enzyme to the transferrin. With the enzyme attached, the transferrin also bound to the receptor and was taken up in the cells of the BBB.

Finally, Visser attached a tiny fat bubble (liposome) containing small molecules, such as medicines, to the transferrin. She discovered that the transferrin with the liposome attached was also taken up by the cell. However, the cell subsequently broke down the liposomal content, because the liposomes were significantly bigger than the previously linked enzyme. Liposomes have a diameter of 100 nanometres and the enzyme a diameter of 3 to 4 nanometres. Therefore a liposome or a direct conjugation can be chosen, dependent on the intracellular destination of the medicine.

Dr Corine Visser | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>