Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress toward a new remedy for chronic urinary tract infections?

10.02.2005


Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) at the Free University of Brussels have recently published results that show promise in the quest for a new remedy for chronic urinary tract infections. The researchers have shown that administration of the sugar Heptyl-á-D-mannoside can prevent E. coli bacteria from binding to the wall of the urinary tract − which is the first step in the development of the infection.



A widespread problem

Urinary tract and bladder infections are among the most prevalent bacterial infections and can be quite painful. Fifty percent of all women are confronted by these unpleasant infections at some point in their lives. The disorder is an especially severe problem when it becomes chronic − whereby some patients experience symptoms almost continually. The Escherichia coli bacterium is responsible for 80% of these urinary tract infections. Treatment with antibiotics is possible but does not preclude a recurrence of the infection. In addition to this, more and more bacteria are becoming resistant to the antibiotics. For these reasons, scientists have been busy seeking another solution.


Prevention is better than cure

Julie Bouckaert and her co-researchers, under the direction of Henri De Greve, have discovered a way to prevent E. coli bacteria from adhering to the wall of the urinary tract, so that they can no longer cause infection. Because E. coli bacteria use very particular hair-like projections (called pili) to cling to tissues − the first stage of a potential inflammation − a drug that can prevent this attachment can also avert bladder and urinary tract inflammations.

Combating certain bonds

Bouckaert and De Greve have investigated the way in which the E. coli bacteria attach themselves. This attachment takes place by means of a reaction between the protein ‘Adhesine FimH’ on the tips of the pili and special receptors on the wall of the urinary tract. The researchers hypothesized that they could prevent this binding by administering a substance that would have a greater affinity with Adhesine FimH than with the receptors on the urinary tract. Then, the E. coli binding places would be so captivated by this particular substance that they would no longer be able to cling to the wall of the urinary tract.

Their search for such a substance proved fruitful. Via crystallography and affinity determinations, they demonstrated that the bacteria bind very strongly to the structure of the Heptyl-á-D-mannoside sugar. This binding is strong enough to prevent the bacteria from attaching themselves to the urinary tract wall. Therefore, administration of Heptyl-á-D-mannoside could prevent bladder infections. This finding opens possibilities for the development of a new medication for chronic urinary tract infections.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>