Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The shape of allergy - what makes an allergen an allergen

11.01.2005


An enduring mystery for allergy researchers has been the unpredictable distribution of allergens in plants. For example, being allergic to birch pollen can predispose a person to allergy from distantly related plant foods such as celery, apple or soy.



Most allergens are proteins. Research published on Tuesday identifies 129 plant allergens in just four main protein families. “Knowing what makes a protein more likely to become an allergen could make it easier for manufacturers to identify potential allergens in novel foods and ingredients, preventing them from reaching the consumer”, said Dr Clare Mills, head of the allergy research team at the UK’s Institute of Food Research.

Proteins are constructed from amino acids, and previous research has focused on analysing the sequence of amino acids to identify potential allergens. However, this can lead to false predictions. Sequence data alone does not reveal how amino acids interact to construct proteins.


The interaction of amino acids creates proteins folded into particular shapes. The new research by a team of scientists considered both amino acid sequence and structural similarities between surface features of plant proteins using a 3D computer model. “By modelling surface features of proteins from a range of flowering plants, we were able to explain why cross-reactions can occur between species that otherwise seem dissimilar”, said Dr Mills. “This is especially important to help us understand why people with allergy to birch pollen can suffer related allergies to fresh fruits and vegetables”.

Flowering plants first appeared over 100 million years ago during the late Jurassic period, the age of the dinosaurs. Flowering plants became the most dominant plant on Earth and today include all our food plants. Very early in their evolution there was a split into two major groups. Some plant protein structures changed and some stayed the same or were ‘conserved’. “We found that even a single conserved region on the surface structure of a protein can cause cross-reactivity”, said Dr Heimo Breiteneder of the Medical University of Vienna.

Scientists had already observed that although humans consume an enormous diversity of plant foods, just a few foods account for the majority of food allergies. However, their relatedness remained unclear. For the first time, the distribution of plant food allergens has been measured according to protein families. The scientists found that 129 allergens could be classified into just 20 out of 3849 possible protein families, with just four ‘superfamilies’ accounting for more than 65% of food allergens. “We are only now in a position to begin to understand what makes an allergen an allergen”, said Dr Breiteneder.

The research, published in the Journal of Allergy and Clinical Immunology, was funded through the Biotechnology and Biological Sciences Research Council (BBSRC) competitive strategic grant to IFR and Rothamsted Research with additional support from the EU. The research is featured as “The Editor’s Choice” in the journal. Breitenender and Mills have published a review of the molecular properties of food allergens in the same issue.

Zoe Dunford | alfa
Further information:
http://www.ifr.ac.uk

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>