Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Component of plastic stimulates growth of certain prostate cancer cells

04.01.2005


An estrogen-like chemical commonly used to synthesize plastic food containers has been shown to encourage the growth of a specific category of prostate cancer cell, potentially affecting the treatment efficacy for a subset of prostate cancers.



According to a study published in the January 1 issue of Cancer Research, such prostate cancer cells proved to be vulnerable to exposure to the chemical BPA (bisophenol A), an industrial chemical and nonsteroidal environmental estrogen used in the manufacture of food cans, milk container linings, food storage containers and water supply pipes. About 2.5 billion pounds of the chemical are produced each year.

In particular, the study showed that the affected class of prostate cancer cell, characterized by mutated receptors for androgens, the male hormone, can proliferate in response to BPA. "The results may have implications for men who develop BPA-susceptible mutations in their androgen receptor genes during the course of prostate cancer treatment, although these concepts will need to be verified in animal systems," according to Karen Knudsen, Ph.D., an assistant professor in the University of Cincinnati’s Department of Cell Biology and Center for Environmental Genetics. Scientists estimate that anywhere from eight to 25 percent of all prostate cancer patients may fall into this category.


In the United States alone this year, almost 220,000 men will be diagnosed with prostate cancer. The disease is the second most common type of cancer found in American men, and approximately 29,000 men will die from prostate cancer this year.

Many cases of prostate cancer depend on androgens like testosterone for tumor growth and cancer cell proliferation, said Dr. Knudsen, the study’s senior author. A common treatment for prostate cancer includes limiting testosterone synthesis. Patients with mutated androgen receptors may not respond to this therapy and according to this new study, exposure to BPA among these patients could potentially put them at higher risk for increased cancer cell growth.

"The results we see in cell culture in response to BPA are ready to be moved to appropriate animal models next," said Dr. Knudsen. The effect of the environmental non-steroidal BPA on human prostate cancer tumor implants in laboratory animal models will shed additional light on whether the synthetic pseudo-estrogen encourages tumor growth in whole animal systems. "We’ll know more about the ’hormone sensitizing’ ability of BPA in prostate cancer cells from studies on animals. It is also important to note that our study demonstrates that the actual dose of BPA exposure may change the biological response," Dr. Knudsen said.

The safety of BPA has been under intense debate for several years, with some arguing that exposure to the chemical among humans is safe, with others contending that it may promote the growth of human tumor cells and alter the growth and development of animals.

Also participating in the study were Yelena Wetherill, Ph.D., Nicola Fisher, B.S., and Ann Staubach, B.S., all with the University of Cincinnati; Mark Danielsen, Ph.D., Georgetown University, Washington, D.C.; and Ralph De Vere White, M.D., the University of California, Davis.

Russell Vanderboom, Ph.D | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>