Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birth simulator helps physicians I.D. least forceful way to manage problem deliveries

03.01.2005


Johns Hopkins researchers, using a novel birthing simulator designed by biomedical engineering faculty, staff and students at the University, have identified what may be the least forceful way to deliver a baby whose shoulders are stuck in the birth canal.

Shoulder dystocia, in which the baby’s shoulders won’t move past the mother’s bony pelvis during delivery, occurs in about 5 percent of births. Of these, up to a quarter of deliveries may result in an injury to the baby’s brachial plexus, the nerves that control movement and sensation in the arm. As many as 10 percent of infants may sustain some permanent damage.

An obstetrician can perform one of several maneuvers to manipulate the position of either the mother or the baby when shoulder dystocia occurs. The Hopkins researchers found that turning the baby so its spine faces the mother’s belly (a technique known as anterior Rubin’s maneuver) requires less force than either turning the baby so its spine faces the mother’s spine, or moving the mother’s legs back to try to reduce the force of the baby’s shoulders against the mother’s pelvis.



These results are reported in the Jan. 4 issue of the American Journal of Obstetrics and Gynecology.

"Every obstetrician is likely to face this circumstance at some point in his or her career, and the longer the baby remains stuck, the higher the risk that the baby will suffocate," says Edith D. Gurewitsch, M.D., lead author of the study and an assistant professor of gynecology and obstetrics. "While further studies are necessary before we can make definitive recommendations on the use of one procedure over another, our initial lab results demonstrate that we can measure what is happening to the baby during birth, and that we can alter our techniques to create a safer environment for delivery - a goal shared by every obstetrician."

For the study, Gurewitsch performed 30 mock deliveries using a complex birthing device designed by Hopkins faculty, staff and students to simulate shoulder dystocia. It consists of several parts: a maternal model with a three-dimensional bony pelvis, a fetal model, a force-sensing glove, and a computer-based data acquisition system.

The maternal model - composed of pleather "skin," carpet foam, foam sealer and other components - features a birth canal, a mock uterus connected to a pneumatic pump to simulate the natural pattern of uterine contractions and force from a mother’s pushing, and flexible legs that can be moved to rotate the pelvis.

The fetal model consists of a cloth mannequin outfitted with a joystick device, a spring and wooden dowels representing the cervical vertebrae. Additional elements measure neck extension, rotation and stretching of the brachial plexus nerves during delivery.

To deliver the "baby" during the study, Gurewitsch wore a force-sensing glove. The custom, nylon-lycra glove has pockets sewn into it to house force-sensors, which were used to measure the traction she used in delivery. Wires emanating from the sensors connected to a computer-based data-acquisition system that stored and processed the data.

Gurewitsch performed 10 deliveries by turning the baby so its spine faced the mother’s belly, 10 deliveries by turning the baby so its spine faced the mother’s spine, and 10 deliveries by moving the mother’s legs back.

The first maneuver was associated with the least amount of force, at 6.5 pounds, to the baby’s head necessary to achieve delivery. The other techniques applied 8.5 pounds and 16 pounds, respectively. The first maneuver also produced the least amount of stretching on the baby’s brachial plexus nerves, at 2.9 millimeters. The other techniques caused the nerves to stretch by 6.9 millimeters and 7.3 millimeters, respectively.

Researchers calculated that turning the baby created as much as 2 centimeters of extra space between the baby’s shoulders and the mother’s pubic bone, whereas raising the mother’s legs produced only 1 centimeter of extra space.

"Since complicated deliveries comprise a small percentage of vaginal births, clinicians in training often do not have adequate exposure to these types of deliveries," says Robert H. Allen, Ph.D., senior author of the study and a senior engineering lecturer at Hopkins. "Our device provides an opportunity to simulate birth complications and allow clinicians to practice resolving them. Using this birthing simulator as a research tool, we may be able to glean new insights into complicated births and develop new ways to resolve them."

The device won top prize in a student design competition held in September during the international meeting of the Institute of Electrical and Electronics Engineers’ Engineering in Medicine and Biology Society in San Francisco. The inventors, including Gurewitsch, Allen and Paul Gilka, manager of the laboratory that housed the work, have filed a provisional patent on the simulator.

In continuing work with the laboratory model, Gurewitsch and Allen plan to have other doctors train on the simulator to develop a better sense of how much force they apply to babies during delivery.

The current study was funded by grants from the National Center for Injury Prevention and Control, a branch of the federal Centers for Disease Control and Prevention.

Study coauthors were Esther J. Kim, Jason H. Yang, Katherine E. Outland, and Mary K. McDonald.

David March | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.jhu.edu
http://www.bme.jhu.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>