Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Birth simulator helps physicians I.D. least forceful way to manage problem deliveries


Johns Hopkins researchers, using a novel birthing simulator designed by biomedical engineering faculty, staff and students at the University, have identified what may be the least forceful way to deliver a baby whose shoulders are stuck in the birth canal.

Shoulder dystocia, in which the baby’s shoulders won’t move past the mother’s bony pelvis during delivery, occurs in about 5 percent of births. Of these, up to a quarter of deliveries may result in an injury to the baby’s brachial plexus, the nerves that control movement and sensation in the arm. As many as 10 percent of infants may sustain some permanent damage.

An obstetrician can perform one of several maneuvers to manipulate the position of either the mother or the baby when shoulder dystocia occurs. The Hopkins researchers found that turning the baby so its spine faces the mother’s belly (a technique known as anterior Rubin’s maneuver) requires less force than either turning the baby so its spine faces the mother’s spine, or moving the mother’s legs back to try to reduce the force of the baby’s shoulders against the mother’s pelvis.

These results are reported in the Jan. 4 issue of the American Journal of Obstetrics and Gynecology.

"Every obstetrician is likely to face this circumstance at some point in his or her career, and the longer the baby remains stuck, the higher the risk that the baby will suffocate," says Edith D. Gurewitsch, M.D., lead author of the study and an assistant professor of gynecology and obstetrics. "While further studies are necessary before we can make definitive recommendations on the use of one procedure over another, our initial lab results demonstrate that we can measure what is happening to the baby during birth, and that we can alter our techniques to create a safer environment for delivery - a goal shared by every obstetrician."

For the study, Gurewitsch performed 30 mock deliveries using a complex birthing device designed by Hopkins faculty, staff and students to simulate shoulder dystocia. It consists of several parts: a maternal model with a three-dimensional bony pelvis, a fetal model, a force-sensing glove, and a computer-based data acquisition system.

The maternal model - composed of pleather "skin," carpet foam, foam sealer and other components - features a birth canal, a mock uterus connected to a pneumatic pump to simulate the natural pattern of uterine contractions and force from a mother’s pushing, and flexible legs that can be moved to rotate the pelvis.

The fetal model consists of a cloth mannequin outfitted with a joystick device, a spring and wooden dowels representing the cervical vertebrae. Additional elements measure neck extension, rotation and stretching of the brachial plexus nerves during delivery.

To deliver the "baby" during the study, Gurewitsch wore a force-sensing glove. The custom, nylon-lycra glove has pockets sewn into it to house force-sensors, which were used to measure the traction she used in delivery. Wires emanating from the sensors connected to a computer-based data-acquisition system that stored and processed the data.

Gurewitsch performed 10 deliveries by turning the baby so its spine faced the mother’s belly, 10 deliveries by turning the baby so its spine faced the mother’s spine, and 10 deliveries by moving the mother’s legs back.

The first maneuver was associated with the least amount of force, at 6.5 pounds, to the baby’s head necessary to achieve delivery. The other techniques applied 8.5 pounds and 16 pounds, respectively. The first maneuver also produced the least amount of stretching on the baby’s brachial plexus nerves, at 2.9 millimeters. The other techniques caused the nerves to stretch by 6.9 millimeters and 7.3 millimeters, respectively.

Researchers calculated that turning the baby created as much as 2 centimeters of extra space between the baby’s shoulders and the mother’s pubic bone, whereas raising the mother’s legs produced only 1 centimeter of extra space.

"Since complicated deliveries comprise a small percentage of vaginal births, clinicians in training often do not have adequate exposure to these types of deliveries," says Robert H. Allen, Ph.D., senior author of the study and a senior engineering lecturer at Hopkins. "Our device provides an opportunity to simulate birth complications and allow clinicians to practice resolving them. Using this birthing simulator as a research tool, we may be able to glean new insights into complicated births and develop new ways to resolve them."

The device won top prize in a student design competition held in September during the international meeting of the Institute of Electrical and Electronics Engineers’ Engineering in Medicine and Biology Society in San Francisco. The inventors, including Gurewitsch, Allen and Paul Gilka, manager of the laboratory that housed the work, have filed a provisional patent on the simulator.

In continuing work with the laboratory model, Gurewitsch and Allen plan to have other doctors train on the simulator to develop a better sense of how much force they apply to babies during delivery.

The current study was funded by grants from the National Center for Injury Prevention and Control, a branch of the federal Centers for Disease Control and Prevention.

Study coauthors were Esther J. Kim, Jason H. Yang, Katherine E. Outland, and Mary K. McDonald.

David March | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>