Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sudden death from stress linked to wonky signals in the brain

23.12.2004


Sudden cardiac death from emotional stress may be triggered by uneven signals from the brain to the heart, according to a study by University College London (UCL) scientists published in the January issue of Brain.



UCL researchers have discovered that a system which normally coordinates signalling from the brain to different parts of the heart may be disrupted in some people, making them vulnerable to potentially fatal abnormal heart rhythms during mentally taxing tasks or emotional events such as family gatherings.

This is particularly true of people who already have heart disease, but it is the brain that may be most responsible. The new study suggests that uneven brain activity, in a region where nerves link directly to the heart, seems to result in an uneven distribution of signals across the heart, which stops the heart from contracting normally.


Around a third of the 300,000 sudden cardiac deaths which occur each year in the US arise from a blood clot in a major artery, which leads to a fatal heart attack. Mental stress is thought to be responsible for a further 20 per cent of these deaths, but scientists have been baffled by the exact mechanisms by which stress can bring on a fatal short-circuiting of the heart.

In the UCL study, volunteers with a history of heart disease were given stressful mental tasks while their brain activity was monitored using PET imaging. Electrical waves travelling across their heart were monitored using electrocardiogram analysis. The study showed that stress-induced changes in electrical currents in the heart were accompanied by uneven activity within the lower brain, in an area known as the brainstem.

The brainstem is connected on the left and right side to the heart by nerve pathways, known as autonomic nerves. These autonomic nerves control heart rate during physical or mental activity.

To maintain a regular heartbeat, the electrical currents that travel across the heart and initiate the heartbeat should be smooth and even. If these electrical waves travel slower or faster in parts of the heart, this can result in a short circuit which leads to arrhythmia - an irregular heartbeat.

Normally, the output from the brainstem to the heart via left and right autonomic nerves is symmetrical and does not disrupt heart rhythm, even during stress. However, UCL scientists think that, in some cases, the autonomic nerves fire unevenly during stress, which disturbs the smooth electrical pattern across the heart and could ultimately induce an irregular, and eventually fatal, heartbeat.

Dr Peter Taggart from UCL`s Centre for Cardiology says: “Some people are at risk of sudden death from stress, mainly people who already have heart disease. In these cases the combination of heart and brain irregularities means that heart failure could occur during a stressful or emotional event like a family gathering or even a boisterous New Year party.”

“Efforts to prevent the development of potentially dangerous heart rhythms in response to stress have focused on drugs which act directly on the heart, but results have so far been rather disappointing. Our research focuses on what is happening upstream, in the brain, when stress causes these heart rhythm problems. The results so far are very encouraging.

“It may soon be possible to identify which people are particularly at risk and even to treat a heart problem with a drug that works on the brain.”

Dr Hugo Critchley from UCL’s Institute of Neurology says: “The next stage of our research is to explore how signalling from the brain becomes uneven. It seems that emotions and stress may particularly activate the right hemisphere in the upper brain, but this is usually balanced out into a symmetrical signal produced lower down in the brainstem, possibly though a mechanism that works as a protective balancing relay.

“Some patients with epilepsy produce strong one-sided brain activity during fits and may also show asymmetric changes in the heart, suggesting that the relay system is by-passed. In apparently healthy people, it is possible that massive amounts of stress may also overload the system so that the brain’s normal conversion to a balanced symmetric heart response is overcome, leading to arrhythmia.”

“Ultimately we would like to establish whether there might be a therapeutic target in the brain for people at risk of stress-induced heart problems. Some medicines already reduce emotional stress responses and help reduce the risk of sudden heart problems, but we hope to develop more selective treatments that eliminate the need to dampen emotional responses in order to reduce the risk of arrhythmia and sudden death.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk/media/archive/archive-release/?mentalstress
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>