Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sudden death from stress linked to wonky signals in the brain

23.12.2004


Sudden cardiac death from emotional stress may be triggered by uneven signals from the brain to the heart, according to a study by University College London (UCL) scientists published in the January issue of Brain.



UCL researchers have discovered that a system which normally coordinates signalling from the brain to different parts of the heart may be disrupted in some people, making them vulnerable to potentially fatal abnormal heart rhythms during mentally taxing tasks or emotional events such as family gatherings.

This is particularly true of people who already have heart disease, but it is the brain that may be most responsible. The new study suggests that uneven brain activity, in a region where nerves link directly to the heart, seems to result in an uneven distribution of signals across the heart, which stops the heart from contracting normally.


Around a third of the 300,000 sudden cardiac deaths which occur each year in the US arise from a blood clot in a major artery, which leads to a fatal heart attack. Mental stress is thought to be responsible for a further 20 per cent of these deaths, but scientists have been baffled by the exact mechanisms by which stress can bring on a fatal short-circuiting of the heart.

In the UCL study, volunteers with a history of heart disease were given stressful mental tasks while their brain activity was monitored using PET imaging. Electrical waves travelling across their heart were monitored using electrocardiogram analysis. The study showed that stress-induced changes in electrical currents in the heart were accompanied by uneven activity within the lower brain, in an area known as the brainstem.

The brainstem is connected on the left and right side to the heart by nerve pathways, known as autonomic nerves. These autonomic nerves control heart rate during physical or mental activity.

To maintain a regular heartbeat, the electrical currents that travel across the heart and initiate the heartbeat should be smooth and even. If these electrical waves travel slower or faster in parts of the heart, this can result in a short circuit which leads to arrhythmia - an irregular heartbeat.

Normally, the output from the brainstem to the heart via left and right autonomic nerves is symmetrical and does not disrupt heart rhythm, even during stress. However, UCL scientists think that, in some cases, the autonomic nerves fire unevenly during stress, which disturbs the smooth electrical pattern across the heart and could ultimately induce an irregular, and eventually fatal, heartbeat.

Dr Peter Taggart from UCL`s Centre for Cardiology says: “Some people are at risk of sudden death from stress, mainly people who already have heart disease. In these cases the combination of heart and brain irregularities means that heart failure could occur during a stressful or emotional event like a family gathering or even a boisterous New Year party.”

“Efforts to prevent the development of potentially dangerous heart rhythms in response to stress have focused on drugs which act directly on the heart, but results have so far been rather disappointing. Our research focuses on what is happening upstream, in the brain, when stress causes these heart rhythm problems. The results so far are very encouraging.

“It may soon be possible to identify which people are particularly at risk and even to treat a heart problem with a drug that works on the brain.”

Dr Hugo Critchley from UCL’s Institute of Neurology says: “The next stage of our research is to explore how signalling from the brain becomes uneven. It seems that emotions and stress may particularly activate the right hemisphere in the upper brain, but this is usually balanced out into a symmetrical signal produced lower down in the brainstem, possibly though a mechanism that works as a protective balancing relay.

“Some patients with epilepsy produce strong one-sided brain activity during fits and may also show asymmetric changes in the heart, suggesting that the relay system is by-passed. In apparently healthy people, it is possible that massive amounts of stress may also overload the system so that the brain’s normal conversion to a balanced symmetric heart response is overcome, leading to arrhythmia.”

“Ultimately we would like to establish whether there might be a therapeutic target in the brain for people at risk of stress-induced heart problems. Some medicines already reduce emotional stress responses and help reduce the risk of sudden heart problems, but we hope to develop more selective treatments that eliminate the need to dampen emotional responses in order to reduce the risk of arrhythmia and sudden death.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk/media/archive/archive-release/?mentalstress
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>